1.4. Hibridizáción alapuló technikák megjelenése

Julius Marmur (1926-1996) és Paul Doty (1920-2011) a DNS hő hatására bekövetkező denaturációját vizsgálták az 1960-as évek elején, mely munkával igen komoly befolyást gyakoroltak a rekombináns DNS technológia fejlődésére. Hőkezelés hatására a DNS két szála elválik egymástól, és a minta fényelnyelése megnő (260 nm-es hullámhossz környékén a bázisok elnyelik az UV sugárzást). A jelenség hiperkróm effektus néven ismert. A hőmérséklet csökkentésével a DNS minta renaturálódik, vagyis egymással komplementer szekvenciák esetén a hidrogénkötések újra kialakulnak a megfelelő bázispárok között. A DNS denaturáció, renaturáció (különböző eredetű, de komplementer szekvenciával rendelkező szálak esetén hibridizáció) jelenségét számtalan, a mai napig használatos módszer kihasználja, így például az Edwin Southern (1938-) által 1975-ben kidolgozott – és róla elnevezett – Southern-blot (lenyomat) módszer. A Southern-blot egy adott szekvenciával rendelkező DNS molekula specifikus kimutatására szolgáló eljárás. (A hasonló elven működő kimutatási eljárást RNS minta esetén Northern-blotnak nevezzük.)

Michael Smith (1932-2000) a helyspecifikus mutagenezis módszerének kidolgozásáért (1978), míg Kary Mullis (1944-) a polimeráz láncreakció (PCR: Polymerase Chain Reaction) módszerének megalkotásáért (1983) kapott Nobel-díjat 1993-ban. Mindkét módszer kihasználja a DNS láncok hibridizációs képességét. Smith a ΦX174 bakteriofág cirkuláris, egyszálú DNS-ének rövid szakaszaival komplementer szintetikus oligonukleotidokat szintetizált, melyeket úgy tervezett meg, hogy mind az 5’-, mind a 3’-végeik hibridizáltak a fág DNS egy-egy szakaszával, ám a középső szakasz mutációt tartalmazott. DNS-polimeráz segítségével ezután a hibridizált oligonukleotid 3’-végétől egészen annak 5’-végéig szintetizálta a komplementer DNS láncot, majd DNS-ligázzal egyesítette az új szál végeit. Az így keletkezett cirkuláris DNS-nek tehát csak az új szála hordozta a mutációt. A DNS-t baktériumokba juttatva a keletkező fágok egy része az eredeti, míg más része a mutáns szekvenciát hordozta. Ezzel a módszerrel tehát célzottan, bármely két ismert szekvenciarészlet között mutáció hozható létre. A polimeráz láncreakció esetén egy kétszálú DNS molekula („templát”) tetszőleges szakaszáról készíthetünk specifikus módon nagyszámú másolatot. A szakaszt két, a templát DNS egy-egy szálához hibridizáló szintetikus oligonukleotid jelöli ki. A módszer felfedezését az 1.5.1. fejezetben részletezzük.

A DNS hibridizáció jelenségét használja ki a nagy áteresztőképességű kísérletek elvégzésére alkalmas „DNS-chip” (DNS microarray) technológia is, amelyeknek egyik első változatát Stephen Fodor1991-ben fejlesztette ki. A DNS-chip lényege, hogy egy szilárd hordozó felszínén in situ kovalens kötéssel kapcsoltan oligonukleotid próbákat szintetizálnak fotolitográfiai eljárással mikroszkopikus méretű foltokban, előre meghatározott elrendezésben. Adott területen csak egyféle oligonukleotid található, melynek ismert a szekvenciája. Több tízezer ilyen folt is lehet egyetlen chip felszínén. Az így létrehozott szintetikus próbákat felhasználhatjuk például arra, hogy sok gén expressziós szintjét egyidejűleg, párhuzamos módon meghatározzuk.