1.5. A szekvenálástól a genom korszakig és tovább

A DNS bázissorrendjének meghatározására elsőként Frederick Sanger (1918-) dolgozott ki általánosan használható eljárást 1975-ben. A DNS-t felépítő nukleotidokat szelektív módon adta különböző reakcióelegyekhez, melyekben a szekvenálandó DNS-sel komplementer szál szintézisét DNS-polimeráz enzim végezte. A szintézis leállt ott, ahová az enzimnek a hiányzó nukleotidot be kellett volna építenie (ez volt az ún. „plusz-mínusz” módszer). Walter Gilbert (1932-) és Allan Maxam (1942-) 1977-ben kidolgozott egy alternatív eljárást, amelyben a DNS szálakat különböző reagensekkel a négyféle nukleotid után specifikusan elhasította (kémiai szekvenálás). A létrejövő termékek elválasztása poliakrilamid gélen, a fragmentumok kimutatása pedig radioaktivitás alapján történt.

Ugyanebben az évben Sanger is kidolgozott egy új eljárást, melyben ismét a DNS-polimeráz enzimet használta fel a DNS szekvenálására. A DNS szintézis in vitro zajlik, ha van a reakcióelegyben DNS-polimeráz, templát DNS, a templáthoz hibridizált oligonukleotid („primer”; a 3’-OH vég szükséges a DNS szintézishez!), és dNTP (a négy féle dezoxinukleotid: dATP, dCTP, dGTP, dTTP). A DNS-polimeráz enzim képes dNTP analógokat is szubsztrátként elfogadni. Így például a 2’,3’-didezoxinukleozid-trifoszfát (ddNTP) analógok is beépülnek, de mivel ezeknek nincs 3’-OH csoportja, a további szintézis leáll. A módszer ezért a láncterminációs szekvenálás elnevezést kapta (hívjuk még enzimatikus-, didezoxi- vagy Sanger-módszernek is). Sanger négy különálló reakcióelegyet állított össze, ugyanazzal a templát DNS-sel. Mindegyik reakcióelegy tartalmazta a négyféle dezoxi-nukleotidot, viszont a didezoxi-nukleotidok közül csak egyet-egyet. Az újonnan szintetizálódott szálakat gélelketroforézissel szeparálta és az ún. szekvenáló létrát autoradiogramon tudta leolvasni. Sanger az általa kidolgozott módszerrel elsőként határozta meg egy természetben előforduló DNS molekulának, a ΦX174 bakteriofág teljes genomjának (5375 bp) szekvenciáját. Ezzel elkezdődött a genomszekvenálások korszaka. Sanger és Gilbert 1980-ban a DNS szekvenálás módszereinek kidolgozásáért kémiai Nobel-díjat kapott. Sanger esetén ez már a második Nobel-díj volt; az elsőt a fehérjeszekvenálásért kapta 1958-ban.

1.10. ábra: Frederick Sanger

Kezdetben csak kisebb genomok szekvenálása történt meg: 1983-ban a λ-fágé (48 kbp), majd 1995-ben a Haemophylus influenzae (1,9 Mbp) baktériumé, ami az első teljes prokarióta genom megismerését jelentette. Az E. coli genom szekvenciáját 1997-re ismertük meg (4,6 Mbp, ~4.300 gén). Az eukarióták köréből az élesztő (Saccharomyces cerevisiae) volt az első, melynek a teljes genom szekvenciája 1996-ra készült el (12 Mbp, 5885 gén). A Caenorhabditis elegans genomjának szekvenálása 1998-ban fejeződött be (97 Mbp, 19100 gén). A humán genom (3x109 bp, ~23 ezer gén) szekvenálása (Humán Genom Program) 2004-ben fejeződött be (mindössze 14 év munkával), bár az első „vázlatos” szekvenciát már 2000-ben publikálták. Sanger módszerének továbbfejlesztésével (automata fluoreszcens szekvenálás), majd a közelmúltban ún. új-generációs szekvenálási módszerek megjelenésével, mint pl. a piroszekvenálás (2004) tovább gyorsult a genom szekvenálások üteme (ld. 5.3. fejezet). A robbanásszerű fejlődés eredményeképpen több mint 4000 teljes genom szekvenálása készült el 2013-ra, melyek között majdnem 200 eukarióta genomot is találunk.

1.5.1. A polimeráz láncreakció felfedezése

Az in vitro DNS sokszorosítás lehetőségét a polimeráz láncreakció felfedezése teremtette meg 1983-ban. A felfedezés elméleti háttere már régen ismert volt, hiszen Arthur Kornberg 1957-ben felfedezte a DNS biológiai szintézisének mechanizmusát. Munkája során E. coli baktériumból izolált DNS-polimeráz I enzimmel dolgozott, amely segítségével új DNS szálat tudott szintetizálni. A tanulmány megmutatta, hogy a folyamathoz kell egy templátként szolgáló DNS lánc, továbbá, hogy a DNS-polimeráz I enzim működéséhez szükség van Mg2+ ionokra, valamint mind a négy fajta DNS építőkőre, aktivált monomerekre (dNTP-k). Már ma tudjuk, hogy a DNS-polimeráz enzim önmagában nem tudja elkezdeni az új lánc szintézisét, ehhez egy oligonukleotid primerre van szükség (amely a sejtekben egy rövid RNS darab lesz, amit a primáz nevű RNS-polimeráz állít elő), s ezt a primert képes a DNS-polimeráz 5’→3’ irányban meghosszabbítani.

Ezen háttér információk ismeretében a PCR eljárást Kary Mullis dolgozta ki. Mullis érdeme abban rejlik, hogy ciklikussá tette az in vitro DNS polimerizációt és egyszerre két oligomer primert használt, amelyekről egymás felé történik az új DNS szálak szintézise. Meg kell említeni azt is, hogy az ötlet már Kjell Kleppe fejében is megfordult, azonban azt csak elméletben fogalmazta meg, így minden szabadalom Mullis, illetve az őt alkalmazó Cetus Corportion biotechnológiai cégnél kötött ki. Kezdetben Mullisnak mindössze egy 25 bázispár hosszú szakaszt sikerült szintetizálnia. Először az E.coli-ból származó DNS-polimeráz Klenow-fragmentumával dolgozott, később azonban már a hőtűrő Thermus aquaticus baktérium DNS-polimerázát (Taq-polimeráz) használták. Ennek következményeként már nem kellett a magas hőmérséklet miatt minden ciklus után új adag polimeráz enzimet adni a reakcióhoz, és így 1988-ban már 2 ezer bázispár hosszú DNS szálakat tudtak szintetizálni.

A módszer a 90-es évek végére már széles körben elterjedt és számos tudományterületen tett lehetővé áttörő sikereket (pl.: archeológia, igazságügyi orvostan; ld. 6.4. fejezet).

1.5.2. Géntechnológiai eljárások magasabbrendű szervezetekben

Az első transzgenikus élőlényt Rudolf Jaenisch (1942-) és Beatrice Mintz (1921-) hozta létre 1974-ben. Jaenisch korai egér embriókba (blasztocisztákba) injektált SV40 vírus DNS-t. (Az SV40 egy majomvírus, egérben nem képes szaporodni.) Az embriókat nőstény egerek méhébe ültette, ahol azok egészséges utódokká fejlődtek.

Ralph Brinster és Richard Palmiter 1982-ben úttörő munkát végeztek a transzgenikus élőlények előállításának területén. Megtermékenyített egér petesejtekbe injektáltak plazmid DNS-t, mely idegen gént hordozott egy indukálható promóter (az egér metallotionein gén promótere, amely nehézfémek jelenlétében aktiválódik) szabályozása alatt. Az ilyen módon kezelt petesejteket nőstény egerek méhébe ültették. Az így létrehozott egerek szöveteiben az idegen DNS azonos mennyiségben volt jelen (az egér nem volt mozaikos). A bevitt DNS konstrukció integrálódott a genomba, sőt az idegen génről fehérjeszintézis történt. A módszer tehát lehetőséget teremtett arra, hogy bármilyen gént bejuttassanak az állatok genomjába úgy, hogy az minden szövetben és sejtben jelen legyen. Az így módosított organizmusban a gént szabályozó régiók megfelelő megválasztásával lehetséges indukált, vagy konstitutív fehérje expressziót létrehozni, akár szövet- vagy sejtspecifikus módon.

A transzgén technológiával párhuzamosan, szintén az 1980 években jelent meg az úgynevezett „knock-out”, azaz génkiütés technológia. A módszer kifejlesztésében kulcsszerepet játszó Mario Capecchi (1937-), Oliver Smithies (1925-) és Martin Evans (1941-) 2007-ben fiziológiai és orvostudományi Nobel-díjat kapott. Evans elsőként izolált embrionális őssejteket korai egér embriókból és azokat blasztocisztákba injektálva sikeresen hozott létre kiméra állatokat (olyan állatok, melyek bizonyos sejtjei, szövetei az őssejtekből fejlődnek, így genetikai értelemben mozaikosak). Capecchi és Smithies egymástól függetlenül bizonyították, hogy az emlős sejtekben lejátszódó homológ rekombináció felhasználható arra, hogy adott géneket célzottan módosítsanak a genomban. Később az Evans által kifejlesztett módszert használva, embrionális őssejtek genomját sikerült célzottan módosítaniuk. Capecchi később kidolgozott egy szelekción alapuló módszert, melynek segítségével tesztelhetővé vált a homológ rekombináció sikeressége bármely megcélzott DNS szakasz esetén. A módosítás nem feltétlenül jelenti a megcélzott gén inaktiválását (knock-out); lehetséges a megcélzott helyre egy teljes, funkcióképes új gén beépítése is (knock-in). A technológia forradalmasította a biológia számos területét, hiszen lehetőség nyílt bármely gén funkcióját közvetlenül, a teljes élőlényben vizsgálni (ld. 14. fejezet). Talán a legjobb példa erre, hogy ma már számos genetikai eredetű emberi betegség kutatásához elengedhetetlen modellrendszer a megfelelő KO (knock-out) egér.

Egy másik fontos módszer, mellyel gének működésének célzott módosítására van lehetőség, az úgynevezett RNS interferencia. A más néven gélcsendesítésnek nevezett módszer felfedezéséért 2006-ban Andrew Fire (1959-) és Craig Mello (1960-) kapott Nobel-díjat. A két kutató modellorganizmusként a Caenorhabditis elegans nevű fonálférget használta. A kutatók kimutatták, hogy az állat testébe injektált kétszálú RNS az adott gén funkcióvesztéses mutációjához hasonló fenotípust eredményezett. (Az egyszálú minták esetén alig volt kimutatható hatás.) A kétszálú RNS tehát „interferált” a gén működésével. Fire és Mello más géneket „megcélozva” is megismételte a kísérletet, így kimutatták, hogy a jelenség általános, továbbá specifikus a megcélzott génre. Mivel az RNS interferenciához igen kis mennyiségű kétszálú RNS is elég volt, feltételezték, hogy valamilyen katalitikus komponens is szerepet játszik a jelenség mögötti molekuláris mechanizmusban. Ma már bizonyított, hogy az RNS interferencia a legtöbb eukariótában működő jelenség, mely mögött a sejtekben szintetizálódó mRNS molekulákat lebontó enzimatikus mechanizmus áll. Ez az enzimrendszer számos fontos funkcióval rendelkezik, így például védelmet nyújt a vírusokkal, vagy a transzpozonokkal (mobil genetikai elemek) szemben, de elengedhetetlen számos gén működésének szabályozásához is. Napjainkra az RNS interferencia a génműködés tanulmányozásának fontos eszközévé vált, sőt várható, hogy a jövőben a humán gyógyászatban is szerepet kap (ld. 15. fejezet).