4. fejezet - Alapmódszerek és rekombináns DNS konstrukciók tervezése

Tartalom

4.1. Alapmódszerek
4.1.1. A DNS tisztítása és analízise
4.1.2. Gélelektroforézis
4.1.3. Hibridizációs technikák és nukleinsav próbák
4.2. Rekombináns konstrukciók tervezése
4.2.1. Az inszert előállítása
4.2.2. A vektor előkészítése
4.2.3. Ligálás
4.2.4. TA/Topo-klónozás
4.2.5. Ligálás-független klónozás
4.2.6. Restrikciós hasítás nélküli ligálás rekombinációval (attB, attP)
4.3. Génbeviteli eljárások
4.3.1. Transzformálás
4.3.2. Transzfektálás
4.3.3. Elektroporáció
4.3.4. Infekció
4.3.5. Génpuska
4.4. További olvasnivaló a fejezethez

A géntechnológiai módszerek fejlődése lehetővé tette, hogy bármilyen organizmusból izolálhassunk bármilyen tetszőleges gént, az izolált gént klónozással felszaporítsuk, és szekvenálással „kiolvassuk” a genetikai információt. Ebben a fejezetben a géntechnológia alapmódszereit ismertetjük, kezdve a DNS tisztítástól és a szeparációs technikáktól (gélelektroforézis, ld. 4.1.2. ), a hibridizációs technikákon (ld. 4.1.3. ) át a DNS konstrukciók tervezéséig (ld. 4.2. ) és a DNS gazdasejtbe juttatásának módszereiig (génbeviteli eljárások, ld. 4.3. ).

4.1. Alapmódszerek

4.1.1. A DNS tisztítása és analízise

A rekombináns DNS-ek előállítása a vektor és a majdani inszert DNS tisztításával kezdődik. Ezt követően meg kell győződnünk a DNS pontos méretéről, mennyiségéről és tisztaságáról. A DNS izolálása az RNS-hez képest egyszerűbb, mert az RNS esetében nehéz megszabadulni a szinte mindenhol jelen lévő RN-áz enzimektől. Ez az alfejezet a DNS előállításához és izolálásához szükséges oldatokat, reagenseket, a tisztításhoz használt módszereket (pl. „miniprep”) és a DNS koncentrációmérés lehetőségeit mutatja be.

4.1.1.1. Oldatok, reagensek

A vektor DNS-t baktérium tenyészetekben állítjuk elő, s ugyanezeket a tenyésztési körülményeket használjuk a rekombináns DNS felszaporításához is a molekuláris klónozás során. A baktériumok tenyésztéséhez, növekedéséhez táptalajra van szükségünk. Leggyakrabban steril LB (Luria-Bertrani; összetétele: tripton, élesztő kivonat, NaCl) vagy 2YT (több élesztő kivonatot és triptont tartalmaz) médiummal dolgozunk. A mikrobiológiában használatos táptalajok halmazállapotuk szerint lehetnek folyékonyak és szilárdak. Szilárd táptalajt úgy kaphatunk, ha a sterilezést megelőzően valamilyen szilárdító anyagot keverünk a tápleveshez, leggyakrabban agart. Ilyenkor magas hőmérsékleten az agar feloldódik, majd a kihűlés előtt Petri-csészékbe öntjük, és hagyjuk megdermedni (agar lemez). A 4.1. ábrán folyadék és szilárd halmazállapotú táptalajokat mutatunk be. Nagy mennyiségű baktériumsejt felnövesztéséhez folyékony táptalajra van szükség, de abból az egyedi klónokat nem tudjuk szétválasztani. Azért kell a szilárd táptalaj, hogy a sejtszuszpenziót hígan eloszlatva, az egyedi klónok egymástól szétválasztható egyedi telepeket képezzenek.

Folyadék és szilárd halmazállapotú táptalajok

4.1. ábra: Folyadék és szilárd halmazállapotú táptalajok. A jobb oldali lemezen az egyedi baktériumtelepek (klónok) is látszanak.

Nagy mennyiségű plazmid DNS előállításához először a felszaporítani kívánt plazmidot (ld. 7.2. fejezet) kompetens E.coli baktériumokba kell transzformálni (ld. 4.3.1. ). Ahhoz, hogy kizárólag a plazmidot felvett baktériumsejtek növekedjenek, a táptalajhoz valamilyen antibiotikumot is kell adni, hiszen a plazmidot felvett sejtek rendelkeznek legalább egy antibiotikum rezisztenciát kódoló génnel (ld. 7.1.2. fejezet), és így tovább tudnak osztódni, míg az „üresen” maradt sejtek elpusztulnak (szelekció).

4.1.1.2. Plazmid DNS preparálás

A felszaporítandó plazmidot tartalmazó baktériumsejtekkel folyékony táptalajt inokulálunk, és egy éjszakán át, 37°C-on növesztjük, majd a sejteket centrifugálással összegyűjtjük. A baktériumsejtekből történő DNS izolálás klasszikus módszere az ún. alkalikus lízis, amely során SDS-t tartalmazó NaOH oldattal tesszük tönkre a sejtmembránt és denaturáljuk a makromolekulákat. (Birnboim and Doly dolgozták ki ezt a módszert 1979-ban). A sejtek feltárását elérhetjük enzimekkel (lizozim, proteináz K) vagy mechanikai hatással is (pl. szonikálás ultrahanggal, nagy nyomás az ún. French-press módszernél, többszörös fagyasztás-felolvasztás). Az oldatba került DNS molekulákat el kell választani a többi sejttörmeléktől és fehérjéktől. Az óriási méretű kromoszomális DNS-t (3,6 Mbp) könnyen ki lehet csapni (neutrális pH-n), az RNS-eket és a különböző fehérjéket enzimekkel lehet degradálni. A fenol-kloroform-izoamilalkoholos extrakció esetén a fenol és a kloroform, mint szerves oldószerek denaturálják a fehérjéket, a plazmid méretű (2-10 kbp) nukleinsavak viszont a vizes fázisba kerülnek. Az izoamilalkohol csökkenti a bifázisos oldat habosodását. Végül a DNS-től etanollal vagy izopropanollal vonjuk el a vizet és ezzel csapjuk ki, majd centrifugálással kiülepítjük az extrakromoszomális plazmid DNS-t egy műanyag Eppendorf-cső falára. Az alkohol eltávolítása után vízben vagy Tris-EDTA (TE) pufferben visszaoldjuk a tiszta DNS-t.

A nyers lizátum tisztításának egy másik hagyományos módja a CsCl-os sűrűséggradiens centrifugálás, amit manapság már ritkábban használnak, mivel fél napos nagy fordulatszámú (350.000 g) ülepítés szükséges hozzá. Viszont nagy tisztáságú DNS-t lehet vele kinyerni, és épségben maradnak a nagyobb méretű (>10 kbp) DNS molekulák is, amelyek mechanikailag érzékenyek a pipettázásnál is fellépő nyíróerőkre. A 4.2. ábra a CsCl sűrűséggradiens centrifugálás sémáját mutatja be.

A sűrűséggradiens centrifugálás sémája

4.2. ábra: A sűrűséggradiens centrifugálás sémája. Erős centrifugális erő hatására a nehéz Cs+ ionok a centrifugacső aljába kényszerülnek, ezzel egy vékony sűrűséggradienst képezve. A DNS molekulák ebben a gradiensben addig a pontig fognak vándorolni, amíg el nem érik a gradienssel ekvivalens sűrűséget (izopiknikus pont; 1,6-1,8 mg/ml CsCl koncentrációnál). Centrifugálás hatására a CsCl oldatban lévő makromolekulák különböző helyzetű sávokat alkotnak a gradiensben. Az alig különböző méretű és alakú molekulák is képesek szeparálódni (például különböző GC gazdagságú vagy térbeli szerkezetű DNS molekulák). A DNS-t etídium-bromiddal kezeljük, amely interkalálódik a DNS bázispárjai közé. A DNS sávok elhelyezkedését UV fényben lehet detektálni a fluoreszcens festéknek köszönhetően. Az izolált DNS-ről végül n-butanollal az etídium-bromid, dializálással a CsCl választható el.

Az eddig ismertetett módszerek hátránya, hogy nagy elővigyázatosságot igényel a mérgező reagensek (pl. fenol, etídium-bromid) és a veszélyes hulladék miatt, drága eszközök (pl. ultracentrifuga) szükségesek hozzá és rendkívül időigényesek. A kis mennyiségű bakteriális DNS („miniprep”) alkalikus lízisen alapuló kivonására manapság számos, kereskedelemi forgalomban kapható kit áll rendelkezésre, melyekkel nagy tisztaságban és mennyiségben lehet kinyerni a plazmid DNS-t. Ezek a kitek alapvetően a részletesen ismertetett alkalikus lízis módszerén alapulnak, de a fenolos extrakciós lépés helyett egy szilikát tartalmú oszlopon (vagy membránon) történő tisztítást tartalmaznak. A minipreppel általában 10-100 µg DNS-t lehet kinyerni. Vannak olyan kitek is, amelyekkel jóval nagyobb mennyiségű DNS-t is lehet tisztítani. A „midiprep” módszernél kb. 25-50 ml sejtkultúrából indulunk ki, és 100-350 µg DNS-t kaphatunk. Ennél több DNS „maxi-” „mega-” és „gigaprep”-pel (100 ml-5l sejtkultúra, 500 µg-10 mg DNS) állítható elő. „Miniprep” protokoll-leírásokat többek között itt találnak az interneten.

4.1.1.3. A DNS koncentráció meghatározása

A plazmid DNS koncentrációját leggyakrabban fotometriával mérjük. A nukleinsavak elnyelési maximuma 260 nm-nél van az aromás gyűrűk miatt. Az elnyelés alapján megadható a DNS koncentrációja. Ha az abszorbancia A260 = 1, ez az érték megfelel 50 µg/ml duplaszálú DNS-nek (37 µg/ml egyszálú DNS-nek vagy 40 µg/ml RNS-nek). A fehérjék elnyelési maximuma 280 nm-nél van, tehát különbözik a DNS-étől, ezért könnyedén megállapítható a minta fehérje szennyezettsége is, melyet az A260 / A280 hányados határoz meg pontosan. Ha ez az érték kevesebb, mint 1,8, akkor a minta fehérjével szennyezett. Ha viszont 2 felett van, akkor RNS-t is tartalmazhat. A mérést elvégezhetjük hagyományos UV fotométerben, de ehhez sok anyagra van szükségünk. Ma már legtöbbször ún. nanodrop technikát alkalmazunk (ld. 4.3. ábra), melynél egy csepp (~2 µl) DNS koncentrációját mérjük egy speciális spektrofotométerben.

4.3. ábra: DNS koncentráció mérése nanodrop technikával

4.1.2. Gélelektroforézis

Mindenfajta gélelektroforézis azon az elven alapul, hogy a töltéssel rendelkező molekulák az elektromos térben az ellentétes töltésű elektróda felé vándorolnak. A vándorlás sebességét a töltésen kívül a molekula alakja és mérete határozza meg. Ez a három tulajdonság teszi lehetővé, hogy különböző minőségű és pórusméretű gélekben az eltérő tulajdonságú biomolekulákat elválasszuk egymástól.

4.1.2.1. Agaróz gélelektroforézis

Az agaróz a vörösmoszatok agar-agarjának egyik poliszacharid összetevője, mely a D-galaktóz és 3,6-anhidro-L-galaktopiranóz lineáris polimere. Rendkívül jól alkalmazható nukleinsavak szeparálására. A biokémiában az agaróz gélelektroforézis DNS molekulák, elsősorban méret és alak szerinti elválasztására szolgál. Agaróz gélben néhány 10 bp-tól több 10 kbp-ig terjedő méretű (hosszúságú) DNS molekulákat lehet szétválasztani. A DNS molekula negatív töltése cukorfoszfát gerince miatt egyenesen arányos a hosszúságával. Ezért egy vízszintesen elhelyezett agaróz gélben (horizontális gélelektroforézis) a pozitív pólus felé vándorló DNS molekulák mobilitása arányos lesz a hosszukkal. Az agaróz 0,5-2%-os oldata forralással készül. Dermedéskor az agaróz térhálós szerkezetű lesz. A forralást követően a gélhez interkaláló fluoreszcens festéket is adunk, amely a DNS-t UV fényben láthatóvá teszi. Régebben a már korábban is említett etídium-bromidot (ld. 4.4. ábra) alkalmazták erre a célra, azonban ez erősen mutagén hatású, ezért manapság más, biztonságosabb festékeket használunk helyette (pl. SYBR Safe, Gel Green).

4.4. ábra: Az etídium-bromid fluoreszcens DNS-festék szerkezeti képlete

A gél öntésekor, az öntő formára merőlegesen, felülről egy ún. "fésűt" is elhelyezünk, ami a mintafelvitelhez szükséges zsebeket fogja kialakítani. A fésű méretét a minta mennyiségétől függően választjuk ki. A dermedt gélből óvatosan kivesszük a fésűt, és a zsebekbe pipettázzuk a mintánkat, majd egy elektródákkal ellátott kádba helyezzük a gélt. Az elektroforézishez szükséges egyenáramot a tápegység biztosítja. Minden egyes mintához "DNS-kezelő" oldatot is keverünk, mely glicerint és általában kétféle festéket is tartalmaz. A glicerin arra szolgál, hogy nagyobb sűrűsége révén a mintákat a zseb alján tartsa, ne diffundáljanak ki a pufferbe. A festékek segítségével pedig megállapítható, hogy hol tart az elektroforézis. A brómfenolkék láthatóvá teszi felvitelkor a mintát, és kiváló mobilitási képességei következtében (1%-os gélben egy 300 bp-os DNS fragmentummal fut együtt) sötétkék színe a futási frontot jelzi. A xilén-cianol nagyon lassan halad a gélben (kb. 4 kbp DNS-sel fut együtt).

Az elektroforézishez használt puffer (TBE: Trisz-borát-EDTA vagy TAE: Trisz-acetát-EDTA) ionerőssége fontos tényező a DNS elektroforetikus mobilitása szempontjából. Túl alacsony ionerőn a DNS csak lassan képes haladni, míg ha túl magas az ionerő, akkor a vezetőképesség is növekszik, túl sok hő képződik, amitől a gél meg is olvad. Alacsony feszültségen a lineáris DNS vándorlási sebessége arányos a feszültséggel. A megfuttatott gélt végül UV fénnyel világítjuk meg, s a gélhez adott fluoreszcens festéknek köszönhetően világítani fognak a DNS-ek sávjai a gélben. A láthatóvá vált DNS sávokat ki is vághatjuk a gélből további tisztításra, felhasználásra.

Az agaróz gélelektroforézis kivitelezését a 4.5. ábrán és a 4.1. videon szemléltetjük.

4.5. ábra: Agaróz gélelektroforézis

4.1. video: Az agaróz gélelektroforézis kivitelezése

4.1.2.2. Poliakrilamid gélelektroforézis (PAGE)

A nukleinsavakat nemcsak agaróz, hanem poliakrilamid gélelektroforézissel (PAGE) is el tudjuk választani egymástól. A PAGE-t a horizontális agaróz elektorforézistől eltérően vertikális (függőleges) elrendezésű készülékben végezzük (ld. 4.6. ábra). A poliakrilamid gél egyik legjelentősebb eltérése az agaróz géltől, hogy sokkal kisebb a pórusmérete. Felbontása 5-2000 nukleotidig terjed, és képes elválasztani az akár 1 nukleotid hosszban különböző oligo- vagy polinukleotid szálakat is egymástól. A Sanger-féle klasszikus DNS szekvenálás során PAGE-vel választják el a különböző hosszúságú lineáris, újonnan szintetizált egyszálú DNS-eket egymástól. Megjegyzendő, hogy az automata DNS szekvenátorokban kapilláris elektroforézist használnak (ld. 5.2.2. fejezet), amihez más szintetikus polimereket alkalmaznak. Az akrilamid vizes közegben, megfelelő iniciátorok (pl. peroxidiszulfát) és katalizátorok (tetrametil-etilén-diamin, TEMED) jelenlétében gyökös polimerizációra képes, és nagy mólsúlyú lineáris polimer, poliakrilamid keletkezik. A térhálós szerkezet a keresztkötő ágens (N,N-metilén-bisz-akrilamid) jelenlétében alakul ki, aminek segítségével a hosszú poliakrilamid láncok között hidak képződnek. Megjegyzendő, hogy a fehérjék elválasztására is PAGE-t használunk, mivel még a nagyobb méretű fehérjék (>100 kDa) is jóval kisebbek, mint egy kisméretű plazmid (1 kbp ~ 600 kDa).

Poliakrilamid gélelektroforézis készülék

4.6. ábra: Poliakrilamid gélelektroforézis készülék „kamráinak” felöltése mintákkal.

Mivel a különböző hosszúságú DNS molekulák relatív töltése azonos (a foszfát-csoportok negatív töltése miatt), ezért a lineáris molekulák mindig méret szerint válnak szét. Ha valamilyen denaturáló ágenst is keverünk a gélhez, például ureát, akkor a lineáris DNS szálak alakja is egyforma lesz, így ténylegesen csak a méret alapján szeparálódnak. Fehérjék esetében is hasonló az elválasztás elve, de fehérjék szeparálására a PAGE számos más változatát is használjuk (2D PAGE, SDS-PAGE, izoelektromos fókuszálás).

4.1.2.3. A DNS-ek méretének meghatározása

A DNS méretét ismernünk kell, ha azt analizálni vagy preparálni szeretnénk. A lineáris DNS molekula méretének logaritmusa és az elektroforetikus mobilitása között fordított arányosság van (a mobilitás és a méret logaritmusa között lineáris az összefüggés). Így egy ismeretlen molekula mérete meghatározható a futási távolság ismeretében, ha mellé olyan DNS molekulákat is felviszünk a gélre, amelyeknek a mérete pontosan ismert. Ez a DNS „létra” vagy molekulasúly marker, ami különböző méretű lineáris DNS molekulák keveréke. Az agaróz gélt alapvetően nagyobb méretű nukleinsavak elválasztására használják, mivel pórusmérete jóval nagyobb a poliakrilamid gélhez képest. A gél agaróz vagy akrilamid koncentrációjától függően, különböző méretű polinukleotidokat lehet elválasztani. Minél hígabb, annál nagyobb, minél töményebb, annál kisebb DNS szálakat lehet szeparálni. Minden vizsgálandó mintához tartozik egy optimális pórusméret, amelyben a molekulák bizonyos ellenállással vándorolnak, de nem akadnak fel, hanem képesek haladni benne.

A hosszabb molekulák a gélben „nehezebben” haladnak, így ezek lemaradnak a rövidebb, kisebb molekulákhoz képest. A polinukleotidok gélben való mobilitásátnagyban befolyásolja az alakjuk is. A cirkuláris/relaxált plazmid formák széttekeredettségük miatt lassabban haladnak, mint az erősen kondenzált, szuperhelikális DNS-ek. A linearizált plazmidok pedig az előbb említett két forma között mozognak (a molekulák alak-szerinti mobilitását a gélben alapvetően a hidrodinamikai térfogatuk dönti el. DNS minták agaróz gélelektroforetikus képét a 4.7. ábra mutatja be.

Agaróz gélben elektroforetizált (futtatott) DNS minta

4.7. ábra: Agaróz gél DNS létrával és különböző DNS mintákkal. A mintákat valamilyen restrikciós endonukleázzal (1- vagy 2-féle) kezeltük. A 3. minta kivételével a DNS minták kettévágódtak, ezért két különböző méretű sávban futnak. A 3-as plazmid DNS minta cirkuláris maradt. A kondenzáltabb szuperhelikális formák gyorsabban, míg a relaxált, kitekeredett molekulák lassabban vándorolnak a gélben. A DNS létrával a molekula méreten kívül a DNS mennyiségét is meg lehet becsülni.

4.1.2.4. DNS-ek izolálása agaróz gélből

A megfelelő DNS-t (pl. vektor vagy inszert DNS), melyet pl. restrikciós emésztés vagy PCR reakció eredményeként kaptunk, az agaróz gélből izolálnunk kell ahhoz, hogy megfelelően elválasszuk a DNS mellett maradt enzimektől (endonukleázok, DNS-polimeráz) vagy a hasítatlan vektortól.

Az agaróz gélelektroforézist követően a gélt ebben az esetben UV fény helyett kék fényben világítjuk meg, mert az UV roncsolná az izolálni kívánt DNS-t. A gélhez adott DNS festék (etídium-bromid helyett pl. SYBR Safe) ugyanis kék fényben is fluoreszkál, ami lehetővé teszi a megbízható, károsodásmentes DNS izolálást. A gélből a megfelelő csíkot egy szikével vágjuk ki (ld. 4.8. ábra), amiből a DNS-t többféle módon is kinyerhetjük.

Az izolálás történhet elektroelúcióval, amikor a kivágott géldarabot egy olyan dializáló membránba helyezzük, ami impermeábilis egy bizonyos DNS molekula méretre, és permeábilis a folyadékokra. TE pufferbe áztatjuk a géldarabot tartalmazó dialízis zacskót, és elektromos teret hozunk létre a dialízis cső körül. Ugyanúgy, ahogy a gélelektroforézisnél is, a DNS elkezd vándorolni a pozitív elektróda felé. Ebben az esetben kivándorol a gélből, de nem juthat át a membránon. A dialízis zacskóból ezután csak ki kell pipettázni a már tiszta DNS-t tartalmazó folyadékot.

4.8. ábra: DNS agaróz gélből izolálása steril szikével

A DNS-t tovább lehet még tisztítani fenolos extrakcióval és etanolos kicsapással. Egy másik hagyományos módszer a géldarab -80°C-on történő fagyasztása. Ezen a hőmérsékleten az agaróz szerkezete már roncsolódik, így egy szűrőn keresztül, centrifugálással kinyerhető a DNS. Egy további kivonási eljárás az alacsony hőmérsékleten megolvadó (low melting) agaróz használata, mivel az oldatfázisba került DNS-t a miniprep módszernél ismertetett szilika membránhoz történő adszorbcióval könnyen tisztíthatjuk. A DNS (és RNS) gélből történő extrakciójára sokféle kit kapható a kereskedelemben.

4.1.2.5. Restrikciós térképezés

A különböző restrikciós endonukleázok eltérő felismerő szekvenciákkal rendelkeznek, így ugyanazon DNS molekulát különböző enzimekkel emésztve különböző restrikciós fragmentumok keletkeznek. A restrikciós enzimeket önmagukban vagy kombinálva alkalmazzuk, és a kapott DNS fragmentumokat gélelektroforézissel választjuk el. A fragmentumok mérete alapján össze tudjuk állítani az eredeti DNS molekula ún. restrikciós térképét (ld. 4.9. ábra).

4.9. ábra: Rekombináns DNS konstrukció térképezése restrikciós endonukleázokkal

Ez egy „kirakós játék”, ami azon alapszik, hogy a hasítóhelyek egymáshoz viszonyított helyzete dönti el, hogy melyik emésztésnél milyen méretű fragmentumok keletkeznek. Akár egy teljes genomot is fel lehet így térképezni (ld. 9.1.1. fejezet). Az ilyen mintázat minden embernél más és más – ezt DNS ujjlenyomatnak nevezik és több célra is fel tudják használni (ld. 4.1.3.2. fejezet).

4.1.3. Hibridizációs technikák és nukleinsav próbák

A molekuláris biológiában a hibridizációs technikákkal valamilyen ismeretlen biológiai mintából akarunk kimutatni egy adott DNS, RNS vagy fehérje szakaszt. Meg akarunk bizonyosodni annak jelenlétéről, mennyiségéről, minőségéről. A hibridizációs technikáknak köszönhetően nincs szükség feltétlenül szekvenálásra, ha a genomban egy mutációt vagy strukturális változást akarunk azonosítani. A hibridizációs technikák molekuláris hátterét az a tény adja, hogy a DNS két komplementer szála reverzibilis módon denaturálható, s a renaturáció nem csak a két eredeti szál között megy végbe, hanem egy oligonukleotid próba jelenlétében az is anellál (hozzátapad) a vele komplementer szálhoz.

Ezekhez az eljárásokhoz tehát mindig szükséges valamilyen ismert szekvenciájú DNS vagy RNSpróbára. Próbának nevezzük a radioaktívan vagy más módon (leginkább fluoreszcenciával) jelölt (az esetek többségében oligonukleotid méretű) oligo- vagy polinukleotidot, ami komplementer a vizsgálni kívánt nukleinsav egyik láncának szekvenciájával. Az egyszálú próba csak egyszálú cél nukleinsav lánchoz képes kapcsolódni. A hibridizáció „szigorúsága” (stringency) attól függ, hogy milyen só koncentrációt és hőmérsékletet alkalmazunk. Magas anellációs hőmérsékleten és alacsony ionerő ún. szigorú (stringent) körülményeket jelent, ilyen esetben csak a próbával tökéletesen egyező nukleotid szálak fognak hibridizálni. Azonban magas ionerőn és alacsonyabb hőmérsékleten a csak részben hasonló szekvenciákhoz is hozzátapadhat a próba.

A fejezet első részében a próbakészítés és jelölés lehetőségeit vázoljuk fel, a további alfejezetekben a Southern- és Northern-lenyomat (blot) módszerről, az in situ hibridizációról és a DNS chipekről lesz szó. Néhány további hibridizációs módszert (pl. kolónia- vagy plakk-hibridizáció) az azt alkalmazó módszert leíró fejezetben tárgyalunk (ld. 8. fejezet). (A hibridizációról még ld. 18.1. animáció.)

4.1.3.1. Nukleinsav próbák előállítása és jelölése

Korábban szinte kizárólag izotópjelölést használtak. A jelölt molekula a próbakészítés módszerétől függően (ld. alább) lehet g-ATP, a-ATP, a-CTP. Az izotópot tekintve használhatunk 32P-t (felezési idő =14 nap), 33P-t (t½=25 nap), 35S-t (t½=87 nap). A hibridizálás eredményét radioaktív próba esetén autoradiográfiával tesszük láthatóvá. Később megjelentek egyéb jelölési módok is, amelyek között a radioaktivitással azonos érzékenységű fluoreszcens próbák terjedtek el leginkább. A fluoreszcens próbákról részletesebben a szekvenálás (ld. 5. fejezet) és a PCR fejezetben (ld. 6.3.2. fejezet) lesz szó. A nem-radiokatív és nem-fluoreszcens próbák között megemlítjük a digoxigenint, egy erősen immunogén (ami azt jelenti, hogy igen nagy affinitással hozzákötődő antitestek állnak rendelkezésünkre), növényi eredetű szteroid, ami nukleotidokra konjugálható, s beépíthető nukleinsav próbákba (az előhívás az antitest jelölésével vagy a hozzá konjugált enzim által termékként előállított festékkel vagy kemiluminszcenciával történhet).

Az oligonukleotid próbákat szilárdfázisú szintézissel (szintetizátorokban), míg a hosszabb DNS vagy RNS próbákat enzimatikus úton állítunk elő. Az egyik lehetőség a DNS molekula végjelölése. Az 5’-végjelöléséhez két enzimre van szükség. Alkalikus foszfatázzal eltávolítjuk a foszfát-csoportot, majd polinukleotid-kináz segítségével ATP-ből izotóp jelölt foszfát-csoport (g-foszfát jelölt!) építhető be a DNS 5’-végére. A 3’ végjelöléshez a DNS-polimerázok 3’→5’ exonukleáz aktivitását használjuk ki. A „visszarágott” szálhoz a polimeráz aktivitás révén dNTP-ből izotóp vagy fluoreszcens jel épül be a 3’-vég közelébe. Ebben az esetben általában jelölt dCTP-t használnak (ennél a módszernél az α-foszfátot kell jelölni!). Készíthetnünk enzimatikusan random DNS próbákat úgy is, hogy DNS-polimeráz segítségével dCTP-ből épül be a jel az újonnan szintetizált láncba. Ugyanezen az elven RNS-polimerázzal DNS-templátról jelölt RNS-próbák is előállíthatók in vitro transzkripcióval.

Megjegyzendő, hogy léteznek szintetikus ún. peptid-nukleinsav (PNA) próbák is, amelyekben a cukorfoszfát gerinc és a foszfodiészter kötések helyett poli N-(2-aminoetil)-glicin váz található és a bázisok ehhez metilén-karbonil csoporton keresztül kapcsolódnak (a bázisok távolsága megegyezik a foszfátgerinchez kapcsolódó bázisok távolságával, tehát a PNA is tud bázispárosodni egy komplementer lánccal). Egy PNA részletét a 4.10. ábrán mutatjuk be

4.10. ábra: Egy peptid-nukleinsav részlete

4.1.3.2. Southern-blot (lenyomat) technika és az RFLP módszer

A Southern-blot (magyarul lenyomat) technika speciális DNS szakaszok kimutatására szolgál egy komplex DNS mintában. Például egy adott gén jelenlétét tudjuk vizsgálni különböző fajok teljes genomjában. Ezzel a technikával a gén méret vagy szerkezetbeli megváltozása is kimutatható. A „lenyomatra” azért van szükségünk, mivel a gélből a DNS diffúzióval az oldatba kerülne a hibridizálás során, másrészt a gél törékeny és nehezen kezelhető.

A Southern-blot kivitelezésekor először a nagyobb méretű DNS molekulát, akár egy teljes genomot, restrikciós endonukleázokkal kisebb darabokra hasítunk, majd agaróz gélben futtatjuk a mintát. A hibridizáció miatt egyszálú DNS molekulákra van szükségünk, ezért NaOH segítségével denaturáljuk a kettős szálat, majd K-acetáttal semlegesítjük. A gélt elektrolit oldatba helyezzük (ami lehet egy szivacs, vagy a blottoló folyadékkal átitatott szűrőpapír), és a tetejére simítjuk a nitrocellulóz- vagy nylonmembránt. A membrán fölé további nedvszívó anyagot (pl. szűrőpapír) rétegezünk. A kapillárishatás miatt a DNS-molekulák a gélből a membránba vándorolnak. A membrán csak az egyszálú DNS-eket köti meg ugyanabban a pozícióban, ahogyan azok eredetileg a gélben elhelyezkedtek (ld. 4.11. ábra). A nitrocellulóz membrán esetében száraz hőkezeléssel (60-100°C-os vákuumban), a nylonmembrán esetében pedig UV-kezeléssel kovalensen hozzákötjük a DNS-t a membránhoz. Ezt követi a hibridizációs próbával történő inkubálás. Majd a membránról lemossuk a nem kötődött nukleinsav próbákat és röntgenfilmen autoradiográfiával, fluorométerrel vagy fotométerrel detektáljuk a jelet (a próba jelölésétől függően).

Radioaktív próba esetén előhíváskor a membránra egyszerűen egy röntgenfilmet helyezünk, és ahol a próba hozzákötődött a mintához, elfeketedik a film. Ezek a sötét sávok tökéletesen egybeesnek a hibridizált, azaz azonosítani kívánt DNS sávjával. Ma már elterjedtek az olyan eljárások is (az ún. foszfo-image screen), ahol a radioaktív jelet közvetlenül digitális jellé lehet alakítani. A radioaktivitás használata a sugárzás veszélyessége miatt ma már kevésbé használatos. A detektálás történhet még kolorimetriával, amikor a próbán valamilyen festékanyag található, amely enzim (pl. alkalikus foszfatáz, peroxidáz) jelenlétében oldhatatlan színes csapadékká alakul, és megfesti a membránt. Ez szabad szemmel is jól látható. Egy másik nem izotópos detektálási mód a fluoreszcens kimutatás, amikor biotinált próbát alkalmazunk, és a membránt fluoreszcens reagenssel jelölt avidinnel vagy sztreptavidinnel kezeljük, majd fluorimetriával detektáljuk. Manapság jóval elterjedtebb és közkedveltebb a kemilumineszcencián alapuló előhívás (ECL: Enhanced Chemiluminescence: megnövelt kemilumineszcencia). Ennél a módszernél a próbára kovalensen valamilyen enzimet, általában torma-peroxidázt konjugálnak. Ezután a membránt olyan anyaggal kezeljük, ami a torma-peroxidáz szubsztrátját, leggyakrabban luminolt tartalmaz. Az oxidáció során, hidrogén-peroxid jelenlétében, a luminol gerjesztett állapotba kerül, és egy fotont bocsát ki, amit megfelelő detektorral vagy röntgenfilmen azonosíthatunk. Fenol vázzal rendelkező molekulák jelenlétében a fénykibocsátás akár 1000-szeresére is növelhető. Ettől lesz „megnövelt” kemilumineszcencia az eljárás.

Southern-blot (lenyomat) technika

4.11. ábra: Southern-blot (lenyomat) technika. A gélben lévő DNS-t nitrocellulóz vagy nylon membránra transzferáljuk, így az elválasztott DNS mintázatának replikáját kapjuk. A transzfer általában egy szivacson keresztül történik, amit egy puffer tartályba helyezünk. A gélt és a membránt a szivacsra tesszük, fölé pedig vastag rétegben szűrőpapírt helyezünk, hogy felszívja a puffert a szivacson, gélen és membránon keresztül. Ezáltal a DNS a gélből a membránba vándorol, és erősen immobilizálódik.

Southern-blot technika segítségével analizáljuk az RFLP (Restriction Fragment Length Polymorphism: restrikciós fragmentum hossz polimorfizmus) módszer alkalmazása során kapott DNS fragmentumokat is. Az RFLP módszer lényege, hogy homológ DNS molekulák variációira (SNP: single nucleotide polymorphism, kiejtve „sznip”) világíthat rá. Az eljárás során teljes genomból indulunk ki, melyet restrikciós endonukleázokkal kezelünk. Az különböző endonukleázok (ld. 3.2.1.2. fejezet) eltérő DNS szakaszokat ismernek fel. Az endonukleázos kezelés után kapott DNS fragmentumok száma az enzim által felismert szekvenciák számától, mérete pedig ezek távolságától függ. A restrikciós fragmentumokat ezt követően gélelektroforézissel szeparáljuk, és Southern-blot hibridizációval detektáljuk. RFLP abban az esetben jelenik meg, ha a vizsgált DNS szálon található inszerció, deléció vagy SNP egy meglévő restrikciós helyet tönkretesz vagy egy újat hoz létre. Ilyenkor gélelektroforézissel eltérő hosszúságú DNS fragmentumokat kapunk. Az RFLP analízis volt az első DNS „ujjlenyomatot” feltérképező, széles körűen elterjedt technika (DNA profiling, DNS tipizálás), amelyet bevezettek az igazságügyi orvostani és a bírósági gyakorlatba is. Az RFLP technika nagyon fontos eszköz volt a genomok fizikai feltérképezésében, különböző mutációk kimutatásában. Ezzel a módszerrel különböző betegségek, vagy az azokra való hajlam is kimutatható.

A 4.12. ábrán egy bűntény elkövetőjének Southern-blot módszerrel előállított RFLP mintázat alapján történő azonosítását mutatjuk be. Ezt az alkalmazást Alec Jeffrey vezette be a gyakorlatba az 1980-as évek közepén (a szexuális-indíttatású gyilkosság elkövetőjét a bíróság a DNS ujjlenyomat alapján 1992-ben életfogytiglani börtönbüntetésre ítélte – ez volt a bírósági gyakorlatban az első eset, ahol géntechnológiai bizonyíték alapján született meg az ítélet).

RFLP, mint DNS ujjlenyomat

4.12. ábra: RFLP, mint DNS ujjlenyomat előállítása. Az eljárás során az egyénekből vett DNS mintát restrikciós endonukleázokkal emésztik, gélelektroforézissel elválasztják, majd Southern-blot hibridizálással állítják elő a DNS ujjlenyomatot, amellyel akár egy bűntény elkövetőjét is azonosítani lehet (ld. a bemutatott ábrát).

4.1.3.3. Northern-blot

A Southern-blottal rokon technika a Northern-blot, csak ebben az esetben DNS helyett RNS molekulákat analizálunk. Ez az eljárás jóval nagyobb elővigyázatosságot igényel, mivel az RNS rendkívül bomlékony. Ezért minden oldatot és eszközt RN-áz mentesíteni kell. Segítségével megállapítható egy adott sejt pillanatnyi génexpressziós állapota és annak változása például differenciálódás során vagy patológiás esetekben. Az izolált mRNS mintát agaróz gélen választjuk el, de a gél formaldehidet vagy glioxált is tartalmaz, amelyek denaturálják az RNS-t, megszüntetik az esetleges másodlagos szerkezeti elemeit. Kisebb méretű RNS molekulák esetén (pl. siRNS, miRNS) ureát tartalmazó poliakrilamid gélt alkalmaznak a tökéletesebb elválasztás érdekében. Az így elválasztott RNS-t tartalmazó gélt nylon membránra blottolják a Southern-blothoz hasonló módon. A blottolás után az RNS membránhoz rögzítését UV keresztkötéssel végzik. A hibridizáció körülményeit a kimutatandó RNS, a használt próba (végjelölt oligonukleotid, random jelölt DNS vagy RNS próba) és a használt hibridizációs puffer együttesen határozzák meg. A kapott jelet a Southern blottnál leírtakhoz hasonlóan hívhatjuk elő. A használt radioaktív próba megfelelő körülmények között (alacsony sókoncentráció, magas hőmérséklet) a membránról lemosható. Az így „lefőzött” membrán RNS-eket detektáló új radioaktív próbával újrahibridizálható.

4.1.3.4. In situ hibridizáció, kariotipizálás

Az in situ hibridizációs eljárás során, sejten, szöveten belül tudunk komplementer nukleotid szakaszokat hibridizáltatni jelölt próbákkal. Az in situ DNS hibridizálás általában a kromoszóma struktúrák megfigyelésére használatos módszer, míg az in situ RNS hibridizálással az adott szövetben expresszáló mRNS-eket, illetve miRNS-eket tudjuk kimutatni mikroszkopikus metszeteken Az egyik legelterjedtebb változata ennek a technikának a fluoreszcens in situ hibridizáció (FISH), amellyel a genom egy-egy kisebb szakaszát lehet megjeleníteni. A FISH technikák fejlődésével, nagy pontossággal és biztonsággal lehet citogenetikai diagnózisokat felállítani, tumoros sejteket azonosítani. A különböző méretű és típusú DNS szakaszok kimutatásához többféle próba áll rendelkezésre. A próbákat egy hapténnel (pl. biotin, digoxigenin, ösztradiol) jelölik, amelyhez különböző fluorokrómok (pl. FITC, rodamin) kapcsolódnak. Teljes hosszúságú kromoszómák kimutatásához az ún. painting próbák alkalmasak. Ha a próbákat eltérő színű fluorokrómmal jelölik, akkor a különböző kromoszómák más-más színnel fognak világítani. Az ún. mulitplex-FISH (M-FISH) technikával egyidejűleg jelölhető az összes kromoszóma (ld. 4.13. ábra), és ezáltal sokféle DNS átrendeződés közvetlenül kimutathatóvá válik.

4.13. ábra: Multiplex-FISH. A humán kromoszómákat különböző fluoreszcens festékkel jelölték (forrás: JackeyCheng.com)

A kromoszómák telomer és centromer régióiban egy adott kromoszómára jellemező ismétlődő szakaszok találhatók, így ezekre a szekvenciákra találták ki a repetitív próbákat. Ezek a próbák főként a kromoszómák számbeli eltéréseinek kimutatására alkalmasak. A génspecifikus és töréspont-specifikus próbákkal speciális, rövidebb szakaszok jelenlétét, hiányát vagy struktúráját lehet feltérképezni. A FISH-sel előállított jel mikroszkópban is megfigyelhető. Azonban a detektálás legérzékenyebb módja ún. CCD kamerákkal történik. Ez a kamera -20°C-on olyan fluoreszcens jeleket is érzékel, amelyre az emberi szem már nem képes. A FISH felbontási képessége 50 kbp-tól 2 Mbp-ig terjed, a DNS kondenzáltságától függően. (A FISH módszerről még ld. 18.2. animáció. )

4.1.3.5. DNS-chip (microarray) technika

A hibridizációs technikák legújabb változata a DNS-chip vagy microarray. Egy kis méretű (1-2 cm2) szilárd hordozó (pl. szilikon, üveg) felületére szabályos elrendezésben több 10000, eltérő szekvenciájú DNS próbát rögzítenek kovalensen. Ez történhet pl. epoxi- vagy amino szilánnal, de gyakoribb a fotolitográfiás eljárással történő in situ szintézis (oligonukleotid próbák esetén). A chipen 1 pont kb. 1 pmól mennyiségű DNS-t tartalmaz. A próbák 20-5000 nukleotid hosszúságúak, génekre vagy cDNS-ekre specifikus oligonukleotidok vagy in vitro szintetizált DNS-fragmentumok. Az eljárás lényege, hogy mikroszkóp segítségével detektáljuk azokat a próbákat a chipen, amelyekkel komplementer DNS vagy RNS van jelen a mintában. A klasszikus, az előző alfejezetekben ismertetett hibridizációs módszerekhez képest a chip technológiánál megfordult a próba és a minta viszonya: itt a próbát, míg az előző módszereknél a mintát immobilizálják (blottolással).

A chipekhez használatos cDNS minták általában úgy készülnek, hogy a vizsgálni kívánt szövetet vagy sejtkultúrát feltárják, és kivonják az mRNS-t, amiből reverz transzkriptázzal cDNS-t szintetizálnak. Ez a mennyiségű cDNS azonban nagyon kevés lenne a további munkákhoz. Ezért PCR reakcióval, fluoreszcens módon jelölt primerek segítségével (pl. Cy5: vörös; Cy3: zöld) sokszorosítják a target DNS szálakat, majd ezt a cDNS-t tartalmazó oldatot inkubálják a chipen. A nem kötődött DNS darabokat lemossák, és a chipet általában egy speciális fluoreszcens előhívó készülékkel (chip reader) vizsgálják. A chip pontjai által kibocsátott fény színét és intenzitását detektálják. A kapott képet számítógépes programok segítségével elemezik; összehasonlítják a különböző minták hibridizációs értékeit, így egy adott kezelésre történő expressziós változásokhoz olyan számok rendelhetőek, melyek a relatív expressziót fejezik ki. A kiértékelés részleteire ebben a jegyzetben nem térünk ki.

A DNS microarray módszert széleskörűen alkalmazzák a funkcionális genomikában; génexpressziós változásokat, valamint az SNP-ktől kezdve a teljes genomot átfogó genetikai különbségeket lehet a módszerrel analizálni. További érdekességeket a módszer alkalmazásáról itt olvashatnak. (A DNS microarray-ről még ld. 18.3. animáció. )

Egy gén-chipet és egy expressziós összehasonlító vizsgálat sémáját a 4.14. ábra mutatja be.

Gén-chip (bal) és összehasonlító génexpressziós vizsgálat sémája

4.14. ábra: Gén-chip (az Affimetryx biotechnológiai cég terméke). A bemutatott két chip-en egyidejűleg több mint 40.000 humán (bal) és egér (jobb) transzkriptumot lehet analizálni. Az mRNS-eket a chip-en in situ fotolitográfiával szintetizált specifikus komplementer DNS próbák reprezentálják (bal) (forrás: Wikipedia, GNU Free Documentation License). Összehasonlító génexpressziós vizsgálat (rákos és egészséges sejt) hibridizációs chipen (jobb)