5.3. Új-generációs szekvenálás

Az új generációs szekvenálások közé tartoznak azok a módszerek, amelyek párhuzamosan sok mintát képesek szekvenálni, azaz nagy áteresztőképességű (HTP: high-throughput) módszerekről van szó (angolul más néven deep sequencing-nek, „mély” szekvenálának és massively paralel sequencing-nek is hívják az új módszereket). Az új-generációs módszerek mind a láncszintézis, mind a detektálás terén lényegileg térnek el a hagyományos Sanger-féle szekvenálástól. Használatukhoz fejlett robottechnika és igen nagy számítógép-kapacitás szükséges. Hátrányuk, hogy valamivel több hibát ejtenek és egy reakció során viszonylag rövid (néhány 100 bázis) DNS-darabot szekvenálnak, igaz, hogy párhuzamosan akár 1 milliót is. Az új-generációs módszerek bevezetésével robbanásszerűen megnövekedett a DNS-alapú vizsgálatok hatékonysága és csökkent a fajlagos költsége. Egy új-generációs szekvenátorral pár hét vagy akár pár óra alatt szekvenálni lehet akár az emberi genomot is. Elsősorban a funkcionális és a környezeti genomika (metagenomika), valamint a transzkriptomok vizsgálata területén alkalmazzák őket. Fontos megjegyezni, hogy ezek a módszerek nem csak DNS szekvenálására, hanem mRNS (RNAseq), kis RNS-ek (small RNA-Seq), és az ún. CHipseq szekvenálásra (ennél a módszernél az ún. kromatin immunoprecipitációval előállított génexpresszió szabályozásban résztvevő DNS régiókat szekvenálják új-generációs módszerekkel) is alkalmasak, melyből közvetlenül következtethetünk egy sejt, vagy a vizsgálandó anyag expressziós állapotára, és DNS szabályozó régióira.

5.3.1. Piroszekvenálás

A piroszekvenálást 1996-ban dolgozták ki, és néhány éve már teljesen automatizálttá vált. A módszer alapelve teljes mértékben eltér a Sanger-féle szekvenálástól. A piroszekvenálás a „szekvenálás szintézissel”' elvén alapul, vagyis egy egyszálú DNS templátról enzimatikusan komplementer szálat szintetizálnak. Valós időben a DNS- polimeráz aktivitását detektálják egy kemilumineszcens enzim segítségével. Amikor egy nukleotid beépül a DNS szálba, pirofoszfát (PPi) keletkezik, és ennek a mennyiségét mérjük egy kapcsolt reakcióval, ami végső soron a luciferáz enzim felvillanással jelez. Egyszerre csak egyféle nukleotidot adnak a rendszerhez, így biztos, hogy csak egy nukleotid fog beépülni növekvő szálba. Ha több nukleotid épül be, akkor arra a fényintenzitás növekedéséből lehet következtetni. Kemilumineszcencia csak a megfelelő, komplementer nukleotid esetében következik be, hiszen csak akkor szabadulhat fel a pirofoszfát. A nem komplementer, felhasználatlan nukleotid, még a következő bázis beépülése előtt degradálódik. Alapvetően azt kell detektálni, hogy éppen milyen nukleozid-trifoszfátot adtak a rendszerhez, és az beépült-e az egyszálú DNS-láncba vagy sem.

Az eljárás egy ún. emulziós PCR segítségével párhuzamosítható, aminek a segítségével már nincs szükség arra, hogy a szekvenálandó DNS darabokat klónozzák. A piroszekvenálásnak két típusa van, a szilárdfázisú és a folyadék fázisú eljárás. Az első esetben a templátokat szilárdfázisú polisztirén gyöngyökre rögzítik, míg a második esetben enzimatikusan, apiráz és exonukleáz kezeléssel készítik elő. Rögzített DNS templát esetében a vizsgálandó DNS szálat először feldarabolják, PCR-rel felszaporítják miközben a primerrel biotinálják. Majd a szálakat aprócska méretű, sztreptavidint tartalmazó műgyanta (polisztirén) gyöngyökhöz kötik. Egy gyöngyhöz mindig csak 1-1 DNS darabot kapcsolnak. Ezt követően a gyöngyöket egy olaj/víz emulzióhoz adják. A vízcseppek - melyek a PCR-hez szükséges anyagokat tartalmazzák - mérete pontosan akkora, hogy mindegyikbe 1 db gyöngy férjen el. A gyöngyöket egy olyan száloptikából készített lemezre viszik fel, ami néhány cm2 ugyan, de kb. másfél millió nanomélyedést tartalmaz. Egy ilyen mélyedés kb. 15 pikoliteres térfogatú, és csak egy gyöngy fér bele. Ezekbe centrifugálással juttatják be a DNS-t, majd hozzáadják a reakcióhoz a többi szükséges összetevőt. A vízcseppekben egymástól elválasztva, külön-külön zajlanak le a reakciók. Minden gyöngyön 100-500 bázis hosszúságú DNS szakasz szaporítható fel. A másfél millió miniatűr csőben egyszerre zajlanak le a reakciók, és ez által nagyon gyorsan, nagyszámú nukleotidot lehet szekvenálni.

Az egyszálú DNS templátot először egy primerrel hibridizáltatják, majd DNS-polimeráz, ATP-szulfuriláz, luciferáz, apiráz, adenozin-5’-foszfoszulfát (APS, mint szubsztrát) és luciferin (szintén szubsztrát) jelenlétében inkubálják. A reakció első lépése, hogy valamilyen dNTP-t adnak a rendszerhez. Ha az komplementer a templáttal, akkor beépül a szálba, leválik róla a pirofoszfát, melyet a szulfuriláz megköt és az APS-ből ATP-t állít elő. Az ATP-ből luciferin jelenlétében, a luciferáz oxiluciferint hoz létre, amely egy fényvillanással járó folyamat (kemilumineszcencia). Fontos megjegyezni, hogy az ATP-nek egy módosított változatát, (ATPαS) alkalmazzák, melyet a DNS-polimeráz igen, de az ATP-szulfuriláz nem tud hasznosítani. Ennek köszönhetően a keletkező ATP biztosan a pirofoszfátból származik, és nem a mesterségesen hozzáadott ATP-t használja fel a szulfuriláz. Minden egyes felvillanást a száloptika egy kamerához vezet, ami detektálja és rögzíti a képet. Ismétlődő bázisok esetében (pl.: TTTTT), öt darab dATP fog beépülni a szintéziskor, és öt luciferint fog felhasználni a luciferáz. A kamera képes arra, hogy ezt pontosan érzékelje, hiszen a keletkezett fénymennyiség arányos a beépülő bázisok számával, tehát ötször erősebb lesz.

A be nem épült dNTP-ket és felesleges ATP-t, rögzített DNS-templát esetében lemossák, szabad templát esetében pedig apiráz enzimmel lebontják, még a következő nukleotid hozzáadása előtt, és kezdődhet újra a ciklus. Egy reakció kb. 10 mp alatt megy végbe, így egy lapocskán kb. 20 millió nukleotidot lehet meghatározni. A módszerhez elengedhetetlen volt a megfelelő informatikai szoftver(ek) kifejlesztése, ami pontosan értelmezni tudja a kapott jeleket, melyeket nukleotid sorrendre fordít, majd a rövid szekvenciák átfedései által, összerakja a teljes DNS molekula pontos szekvenciáját. A piroszekvenálás sémáját az 5.6. ábra szemlélteti.

Amellett, hogy a piroszekvenálás egy rendkívül költséges módszer, további hátránya, hogy mivel nagyon kis térfogatban zajlanak a reakciók, teljesen egyedi DNS templátokkal, egy reakcióban 300-500 nukleotidnál hosszabb templát DNS-t nem lehet alkalmazni, ami jóval rövidebb a Sanger-féle láncterminációs módszernél szintetizált új szálhoz képest (800-1200 nt). Azonban a legújabb technikákkal 5-10 óra leforgása alatt meghatározható akár 400 Mbp hosszúságú szekvencia is egyetlen készülékkel (egy ilyen futtatás kb. 5-7 ezer dollárba kerül). Baktériumok esetében 4-5 óra, eukarióták esetében pár hét alatt meg lehet szekvenálni egy teljes genomot.

5.6. ábra: A DNS piroszekvenálás sémája

5.3.2. Illumina/Solexa szekvenálás

Ezt a módszert a Solexa cég fejlesztette ki, melyet az Illumina cég később felvásárolt. Jellegzetessége, hogy ez volt az első rövid leolvasásokat végző technika. A szekvenálni kívánt DNS-t (akár teljes genomot) apró, 100 bp-os darabokra fragmentálják. A dupla szálú DNS két végét kijavítják (ragadós végek eltüntetése), és egy adeninnel toldják meg az 3’ végeket. Ehhez egy timin túlnyúló véggel rendelkező adapter DNS-t ligálnak. A ligált DNS-darabokat ezt követően szelektálják, és egyszálúsítják NaOH-dal. Majd a mintát egy szekvenáló lemezre viszik fel, ahova az adapterrel komplementer oligonukleotidokat (primerek) horgonyoznak ki. Ezekhez hibridizáltatják a DNS fragmentumokat. Ezután az ún. híd-amplifikációs (bridge amplification) módszerrel (ld. 5.7. ábra) klasztereket képeznek az egyes szálak között és felszaporítják a meghatározni kívánt DNS-szakaszt.

A Bridge-amplifikációs módszer

5.7. ábra: A Bridge-amplifikációs módszer. A felszínen történő amplifikáció állandó hőmérsékleten (60°C) zajlik megfelelő puffer és denaturálószer jelenlétében. Minden reagens egy ciklus erejéig van jelen, aztán lemosódik. A PCR reakció végén kapott dupla szálú DNS templát szálát (amit eredetileg hibridizáltattak a horgonyra) formamiddal leválasztják és lemossák. Az egyszálú DNS elhajlik, és a szabad végével egy másik lehorgonyzott primerrel hibridizál. Ezzel is végbemegy a PCR, és a végső denaturáció. Ezt követően az átírt szálak egymással vagy másik primerrel hibridizálhatnak és duplikálódnak, majd további amplifikáció után készen állnak a szekvenálásra.

Maga a szekvenálás itt is szintézissel történik. A templáthoz egy primert ligálnak, majd a reakcióhoz egyszerre adják hozzá a 4 nukleotidot (reverzibilis terminátorok, ld. 5.8. ábra), melyeket különböző fluoreszcens jelöléssel látnak el.

5.8. ábra: Egy ún. reverzibilis nukleotid analóg szerkezet

A beépült nukleotid fluoreszcens jelét CCD kamerával detektálják. A nukleotid beépülése után kémiai úton levágják róla a fluorofórt és a 3' blokkolót, majd lemossák a be nem épült nukleotidokkal együtt. Ezzel a módszerrel a humán genomot 7-10 nap alatt lehet szekvenálni, ráadásul a költségek is alacsonyabbak.

5.3.3. SOLiD (Sequencing by Oligonucleotid Ligation and Detection)

A szekvenálás oligonukleotid ligálással és detektálással (SOLiD: Sequencing by Oligonucleotid Ligation and Detection) technika 2006-ban született meg. Előnye, hogy nagyságrendekkel alacsonyabb költségekkel dolgozik, mint a korábbi módszerek, viszont hátránya, hogy rövid leolvasott szekvenciákat eredményez (ezért például genom projektekhez nem igazán alkalmas). Az eljárás ebben az esetben is azzal kezdődik, hogy feldarabolják a genomot (35-50 bázis hosszú fragmentumokra), és egy fragmentum könyvtárat hoznak létre. Először a fragmentumok két végére különböző adaptereket (pl. A1 és A2) ligálnak. Második lépésként a szálakat mágneses gyöngyökhöz kapcsolják úgy, hogy az 1µm-es gyöngyökhöz kapcsolt P1 és P2 primerek hibridizálnak a komplementer A1 és A2 templát végekkel. Minden gyöngyhöz csak egyféle DNS darab kapcsolódik. Ezt követően emulziós PCR-rel felszaporítják a szálakat a gyöngyök felszínén, denaturálják a templátot és a gyöngyöket kovalensen szekvenáló lemezre kötik. A szekvencia meghatározás itt ligálással történik olyan oligonukleotidok segítségével, melyek oktamerek, vagyis 8 nukleotidból állnak, és négyféle fluorofórral jelölik őket (ld. 5.9. ábra).

A SOLiD szekvenáláshoz használt primerek

5.9. ábra: A SOLiD szekvenáláshoz használt primerek. A próbák 8 nukleotidból épülnek fel. Az 1. és 2. nukleotid specifikusak (X; komplementerek a szekvenálandó templáttal), a 3.,4.,5. nukleotidok degeneráltak (N; képesek bármilyen nukleotiddal párosodni a templáton) és végül a 6.,7.,8. nukleotidok (z) univerzálisak. A próbák rendelkeznek egy 3'-hidroxil csoporttal, az 5'-végen egy fluoreszcens jellel, valamint az 5. és 6. nukleotid közötti hasítóhellyel, ahonnan a fluoreszcens jelölés, a próba beépülését követően lehasad. A próbáknak, a két darab specifikus nukleotidot figyelembe véve tehát 16-féle (4x4) kombinációja lehetséges.)

Egy templát szál ligálásáshoz 7 ciklus szükséges, ilyenkor az 5'-végtől számított 1. és 2., a 6. és 7., valamint hasonlóan a további pozíciók párosodnak. Ahhoz, hogy az összes bázis elhelyezkedését meg lehessen ismerni, ötször kell megismételni a hétciklusos reakciót. Minden ismétlésnél új primert adnak a reakcióhoz, ami az 3'-vég felé egy-egy bázissal elcsúszva (n-1, n-2, stb.) anellál a templáthoz, így végezetül minden bázist kétszer olvas le a rendszer.

5.3.4. TSMS (True Single Molecule Sequencing: Valódi egymolekulás szekvenálás)

2007-ben fejlesztették ki ezt a technikát (Heliscope készülék), amely amplifikáció nélkül is képes szekvenálni akár egyetlen molekula DNS-t is. Hasonlóan az eddig bemutatott eljárásokhoz, a szekvenálni kívánt DNS-t először 100-200 bp-os darabokra hasítják. Majd 94°C-on denaturálják a kettőshélixeket. Az egyszálú fragmentumokhoz adapter DNS-molekulákkal fluoreszcensen jelölt poli-A farkakat kötnek. Erre azért van szükség, mert a DNS-darabokat egy kamra felületéhez kötik, amihez hatalmas sűrűségben (100 millió/cm2) oligo-T-ket kapcsoltak, és ehhez hibridizáltatva lehet a fragmentumokat a felszínhez rögzíteni. A szekvenáláshoz előkészített kamrát egy készülékbe helyezik, ami lézerrel világítja meg a felületet. Azok a pontok fognak világítani, ahová sikeresen hibridizáltak a DNS-darabok. Ezzel tulajdonképpen a detektor feltérképezi, hogy hol vannak a szekvenálásra vagyis szintetizálásra alkalmas pontok. Ezt követően lehasítják, és lemossák a fluoreszcens molekulákat a felszínről, majd megkezdik a szintézist. Ehhez DNS-polimeráz és fluoreszcensen jelölt dNTP-k szükségesek, primerként az oligo-T szolgál. Ahogyan a piroszekvenálásnál, ennél a technikánál is egyszerre csak egyféle nukleotidot adnak a rendszerhez (pl. dGTP), ami a poli-A farok utáni első citozinnal párosodni fog. Gerjesztés hatására azok a szálak fognak világítani, ahova az adott nukleotid beépült. Majd lemossák a felszínt, és jöhet egy másik jelölt nukleotid. A négyféle nukleotidot mindig egymást követve, meghatározott sorrendben adják a felszínhez. Minden lépés végén csak azok a szálak világítanak, ahová beépült az éppen aktuális dNTP. A készülék minden egyes lépést követően egy fényképet készít a lemezről. Ezzel a módszerrel naponta 1 milliárd bázist is lehet szekvenálni. Hátránya, hogy 0,5%-os hibával dolgozik.

5.3.5. SMRT (Single Molecule Real-time: Egymolekulás valósidejű) szekvenálás

2011-ben fejlesztette ki egy amerikai cég a SMRT készüléket. Ezzel a módszerrel a humán genomot akár 15 perc alatt meg lehet szekvenálni kb. 100 dollárból. Ilyen készülékből jelenleg kb. 10 darab üzemel a világon. 1,5-2,9 kbp hosszúságú szakaszokkal dolgoznak, ami által pontosabb szekvencia meghatározás érhető el. A reakciók apró, 'egymolekulás' kamrákban zajlanak, a DNS szintézis pedig fluoreszcensen jelölt nukleotidokkal történik. Ez a jelölés abban különbözik az eddig leírtaktól, hogy a festéket nem a bázisra, hanem a foszfátcsoportra rakják, amely a nukleotid beépüléskor lehasad a pirofoszfáttal együtt. A leváló fluoreszcens pirofoszfátot egy nanofotonikus vizualizáló kamra detektálja. Egy-egy kamrában 20 zeptoliter (20-21) mintát lehet érzékelni. Minden kamra aljára egyetlen DNS-polimeráz van rögzítve, ami a szintézist végzi. A módszer igazi erejét az adja, hogy egy lemezen több ezer ilyen kamrácska található, ezért hosszú DNS-szálakkal, nagyon nagyszámú minta szekvenálható meg párhuzamosan. Mint minden szintézisen alapuló szekvenáló technikánál, itt is a homopolimerek pontos meghatározásakor akadnak nehézségek, ugyanis ebben az esetben csak a fluoreszcencia intenzitásbeli különbségeire lehet hagyatkozni.