6.3. A PCR termék (amplikon) detektálása és kvantitatív PCR

6.3.1. Agaróz és poliakrilamid gélelektroforézis

A PCR helyes végbemenetelének ellenőrzésére több módszer áll rendelkezésünkre. A legegyszerűbb és a legáltalánosabban használt módszer az agaróz vagy poliakrilamid gélelektroforézis, amelyek segítségével méret alapján tudunk DNS fragmentumokat elválasztani. Mindkét módszer esetén a polimerizált szilárd fázis töménységével lehet beállítani az elválasztási tartományát (ld. 4.1.2. fejezet), így a várt PCR termék hosszának megfelelően tudunk detektálni. A DNS szálak láthatóvá tételét valamilyen interkaláló festékkel (pl.: etídium-bromid, SYBR Green) végezzük el, amelyek a kettős szálba épülve UV-fény hatására megjelenítik a terméket. A PCR reakciók döntő többségét (amennyiben az amplikon hossza >100 bp) agaróz elektroforézissel detektáljuk (ennél kisebb PCR termék esetén jön szóba a PAGE)

6.3.2. Valós idejű (real-time) vagy kvantitatív (q-) PCR

A valós idejű, angolul real-time PCR módszer lényege, hogy a DNS sokszorosítást kvantitatívan tudjuk nyomon követni. Ezzel a technikával nagy pontossággal meg tudjuk határozni a DNS templát kiindulási mennyiségét, ami sok szempontból igen hasznos lehet (pl. az orvosi diagnosztika területén, amikor egy vírusfertőzés mértékére vagyunk kíváncsiak). A real-time PCR-t többféle módon is meg lehet valósítani.

A valós idejű PCR során a DNS mennyiségének meghatározás azon a közös elven alapszik, hogy a célszekvenciához olyan primer próbát (szondát) készítenek (harmadik oligonukleotid), amely nem a forward vagy reverse primer letapadási helyére kötődik, hanem attól különböző helyre, valahol közöttük. Kezdetben olyan szintetikus oligonukleotidot alkalmaztak, amely 5’-végén radioaktív izotóp foszfátot tartalmazott, a 3’-véget viszont úgy módosították, hogy arról ne tudjon a polimeráz szálhosszabbítást indítani. A polimerizáció során, mikor az enzim a szondához elért, annak 5’→3’ exonukleáz aktivitása elbontotta azt és később az oldatban megjelenő izotópjelet mérni lehetett. Napjainkban már olyan szondákat alkalmaznak, amelyek az izotóp használatával szemben jóval biztonságosabbak. A Taqman néven ismert módszernél a szonda oligonukleotid végein különböző fluoreszcens csoportokat tartalmaznak, egy riporter és kioltó (quencher) fluorofórt, amelyek a fluoreszcens rezonancia-energiatranszfer (FRET) jelenséget kihasználva biztosítják a detektálás lehetőségét. A quencher molekula a riporter csoporthoz közel kioltja annak emisszióját, ha azonban a DNS-polimeráz elbontja a szondát, a két fluoreszcens molekula az oldatban távol kerül egymástól, és így már képesek vagyunk a riporter molekulán keresztül detektálni a mennyiségi növekedést (a fluoreszcencia jel növekedése és az újonnan szintetizálódó DNS mennyisége egyenes arányos). A gyakorlatban a Taqman módszer során használhatunk két szondát is, amelyek letapadási helye egymáshoz közel kell hogy legyen. Ebben az esetben az egyik a kioltót, míg a másik oligonukleotid próba pedig a riporter fluorofórt tartalmazza és a polimeráz 5’→3’ exonukleáz aktivitása biztosítja a mért jel növekedését.

A Taqman módszer egy alternatívája a Molecular Beacon módszer, ahol a szonda egy hajtűkanyar másodlagos szerkezetet tartalmaz, és ennek következtében kerül egymáshoz közel a kioltó és riporter fluoreszcens csoport. A DNS polimerizációt követően a szonda képes kötődni az újonnan szintetizálódott szálra, így ez a másodlagos szerkezet kinyílik, a két fluorofór távol kerül egymástól és a riporter emisszióját követni tudjuk.

A valós idejű PCR megvalósításának három lehetséges módját a 6.3. ábra mutatja be.

Valós idejű PCR módszerek

6.3. ábra: Valós idejű PCR módszerek. A különböző panelek (A: TaqMan, B és C: Molecular Beacon) az eltérő módszereket ábrázolják sematikusan. Az R-rel jelölt molekula a fluoreszcens riporter, a Q az elnyomó fluoreszcens molekula, R1 és R2 eltérő fluoreszcens festékek.