7.3. Bakteriofág vektorok

A bakteriofág-alapú vektorok előnye a plazmidokkal szemben, hogy fertőző tulajdonságuk révén sokkal hatékonyabban képesek az idegen DNS-t a gazdasejtbe bejuttatni (a génbeviteli módszereket részletesen a 4.3. fejezetben tárgyaljuk). A tipikus bakteriofág egy külső, fehérjéből álló kapszidból (a virion burka), és a benne lévő örökítőanyagból áll. A genomjukat alkothatja RNS és DNS is, egy- vagy kétszálú formában is. A géntechnológiában vektor előállítása céljából elsősorban az ikozaéderes λ-fágot és a filamentózus M13 fágot vonták be.

7.3.1. λ-fág vektorok

A géntechnológia alkalmazásban az egyik legelterjedtebb bakteriofág az E. coli specifikus λ-fág (más néven enterobakteriofág-λ). Szerkezetében tipikus fág struktúrát mutat, rendelkezik fej, más néven egy kapszid régióval, amelyben lineáris kettős szálú DNS örökítőanyag található, valamint farok régióval, amin keresztül a DNS bejuthat a gazdasejtbe. A vírus genomja ~48500 bp-ból áll és közel 60 gént kódol, amelyek biztosítják a fág szaporodásához és becsomagolásához szükséges enzimeket, azok szabályzó fehérjéit, valamint burokfehérjéket. A vírus lineáris genomja képes cirkularizálódni a gazdasejten belül, ezt a DNS szálak végén található két ragadó cos régió biztosítja. Az λ-fág kétféle életciklust mutat. A lítikus életciklus során a vírus örökítőanyaga miután bejutott a gazdasejtbe, ott többször replikálódik, majd a fej és farok struktúrát képző fehérjék expresszióját követően új vírusrészecskék képződnek, amik a gazdasejt elpusztulása után további sejteket fertőznek. Ezzel ellentétben a lizogén életciklusba akkor lép a fág, amikor az örökítőanyaga beépül az E. coli kromoszómájába, azzal együtt replikálódik. A sejt osztódásával tovább öröklődő, látens fágot profágnak nevezzük (ld. 7.7. ábra).

7.7. ábra: A λ-fág lítikus és lizogén életciklusa

A λ-fág-alapú vektorokon belül megkülönböztetünk inszerciós és szubsztitúciós (helyettesítő) vektorokat. Előbbi esetén a lineáris DNS-ben található egy restrikciós endonukleáz hely, ahova maximum 7 kbp méretű DNS inszertet építhetünk be. Ezt a típust főként cDNS könyvárak előállításához használják (ld. 8.3. fejezet). A helyettesítő vektorok esetén a lineáris DNS-en belül található egy "kitöltő" szekvencia (amely régió eredetileg a vírus lítikus életciklusához nem esszenciális géneket tartalmaz), amelyet elsőként ki kell vágni a vektorból és annak helyére tudjuk beépíteni az idegen génszakaszt). Szubsztitúciós vektorok alkalmazásánál a maximális beépíthető inszert méret 20 kbp, és főleg genomiális könyvtárakat állítanak elő belőlük (ld. 8.2. fejezet). Egy helyettesítő λ-fág vektor konstrukciót ábrázol a 7.8. ábra.

Az λ-fág alapú vektorok alkalmazásakor ügyelni kell a beépíteni kívánt inszert méretére, ugyanis ha az inszert túl kicsi, akkor nem alakul ki a fág fejében a fertőzéshez nélkülözhetetlen nyomás, míg ha túl nagy, akkor nem fér el a DNS a virion feji részében. A rekombináns konstrukciók elkészítésénél nehézséget jelent, hogy a vektor „bal” és „jobb” karját kell az inszerttel ligálni, azaz hármas ligálás történik. A λ-fág vektorok használatának viszont nagy előnye, hogy a rekombináns DNS in vitro „becsomagolható” a vírusrészecskékbe (ehhez olyan „csomagoló kit”-eket használunk, ami a virionok kialakulásához szükséges összes komponenst tartalmazza), s ezáltal infekcióval a megfelelő gazdasejtbe juttatás hatásfoka kiváló.

Rekombináns DNS helyettesítő λ-fág vektorban

7.8. ábra: Rekombináns DNS helyettesítő l-fág vektorban. A λ-fág genomjának középső szakasza (piros) a fág működéséhez nem esszenciális, ezért az inszerttel helyettesíthető. Mivel a DNS fágba pakolásához a DNS méretének egy szűk tartományba kell esnie, így az idegen DNS nélkül a visszazáródó forma túl kicsi ahhoz, hogy a specifikus fehérjék fágba építsék. Az in vitro pakolórendszer a fág genom két végén ismer fel egy rövid DNS szekvenciát.

7.3.2. M13-alapú vektorok

Az M13 fonalas bakteriofág egy 6,4 kbp-ból álló, egyszálú DNS örökítőanyaggal rendelkező, a λ-fághoz hasonlóan E. coli-t fertőző vírus. A viriont kb. 2700 kópiaszámú kapszidburok fehérje (P8) alkotja, melynek egyik végét a P9 (5 kópiában) és P7, míg másik végét a P6 (5 db) és P3 fehérjék zárják le (ld. 7.9. ábra).

Az M13 fág sematikus ábrázolása

7.9. ábra: Az M13 fág sematikus ábrázolása. Az egyszálú cirkuláris DNS-t körülvevlő kapszidot a P8 (kék) fehérje alkotja. A viriont az egyik oldalról a P6 (piros) és P3 (zöld), a másikról a P9 (sárga), és a P7 (lila) fehérjék zárják le.

A P3 fehérje szerepe igen fontos a gazdasejt pilusán át történő fertőzésében. Az M13 fág nem lítikus a gazdasejtre nézve. A fág egyszálú DNS-e a replikáció során kétszálú replikatív formává alakul, amely a piluson át történő transzfer során újra egyszálúvá válik és így fertőz tovább. A laboratóriumi gyakorlatban a kétszálú replikatív formát használják klónozó vektorként. A vírus restrikciós endonukleáz hasító helyeket tartalmaz (pl.: az M13mp18 fág-vektor a pUC18 plazmid vektor tulajdonságait örökölte), ahova könnyen be lehet építeni az inszertet. A vírusrészecske mérete nem limitált, mivel a P8 fehérjéből rendkívül sok darab is képes kapszidburkot képezni, ezért a beépíteni kívánt DNS mérete igen nagy lehet. Legfontosabb felhasználása az M13 fág-alapú vektoroknak, hogy egyszálú templátot szolgáltat a Sanger-féle DNS-szekvenáláshoz és az irányított mutagenezis egyes módszereihez. Ezek mellett az M13 fág kiválóan alkalmazható irányított evolúciós módszerekhez, mint például a fág-bemutatás (ld. 16. fejezet).