10.5. In silico szerkezeti analízisek

10.5.1. Makromolekulák grafikai megjelenítése

Bár a makromolekulák térszerkezetének kísérletes meghatározása atomi felbontásban nehéz feladat, ennek ellenére egyre növekszik az ismert fehérje, fehérje-fehérje és fehérje-nukleinsav komplex szerkezetek száma. A legfontosabb szerkezeti adatbázis a PDB. Az itt elhelyezett szerkezeteket általában kísérletes úton, röntgenkrisztallográfiával (X-raydiffraction), vagy magi mágneses rezonancia-spektroszkópiával (NMR) határozták meg. Az adatbázisból letölthető file *.pdb kiterjesztéssel rendelkezik: ez tartalmazza az atomok elemi koordinátáit. Ezen felül számos egyéb fontos adatot szoktak mellékelni (annotáció): ilyenek például a szerkezet „jóságát” jelző statisztikai adatok, a szerkezeti szimmetriák, és a méréshez felhasznált fehérje fragmentumok pontos szekvenciája. Az atomi koordinátákat erre a célra alkotott molekuláris rajzoló programokkal jeleníthetjük meg „élvezhető” formában. Rengeteg ilyen vizualizációs program létezik: SwissPDBviewer, Chimera, RasMol, JMol, stb. A legtöbbjük ingyenesen letölthető és használható.

A gyakorlatban talán a legelterjedtebbnek számít a PyMol program használata (ennek használatához előbb a Python programnyelvet is telepíteni kell). A megjelenítésnek számos fajtája lehetséges (ld. 10.15. ábra).

A legegyszerűbb módban csak az atomokat összekötő kémiai kötéseket ábrázoljuk, színes vonalak formájában (lines). A színeket a vonalak egyes atomok alapján kapják, de mód van az átszínezésre az egyedi láncok alapján is: a komplexek így könnyebben megfigyelhetőek. Pusztán az a tény, hogy egy szerkezetben egynél több fehérjelánc látszik, önmagában még nem igazolja a komplexek létét: a molekulák a kristályosodás során is összeállhatnak (mesterséges dimerekké, oligomerekké). A számunkra kevéssé érdekes láncokat, aminosavakat vagy atomokat a kijelölésük után egy kattintással átlátszóvá téve akár el is tüntethetjük.

Fehérjeszerkezetek PyMol ábrázolása

10.15. ábra: Fehérjeszerkezetek megjelenítése PyMol programmal. Drótmodell (A), pálcika modell (B), cartoon („rajzos”) modell (C) és a molekulafelszín ábrázolása (D)

A vonalas modelleknél persze vannak sokkal szebbek is: ilyen például az "iskolai kémiai építőkészlet" golyó és pálcika (stick) modellje: ez főleg kis molekulák esetén nagyon látványos (ld. 10.16. ábra). A vonalas vagy pálcika-modellek nem igényelnek nagy számítási kapacitást, de az oldalláncok már a néhány tucat monomerből álló makromolekulák esetén is áttekinthetetlen "dzsungelt" eredményeznek. Nagy molekulák esetén ezért gyakrabban használjuk a fő láncot szalaggal ábrázoló (ribbon) vagy a rajzos (cartoon) módot.

10.16. ábra: Kismolekulás ligandumok (A) és fehérje-fehérje kölcsönhatások (B) látványos megjelenítése különféle modellek kombinációjával, PyMol programmal

Rajzos modellben a nukleinsavak cukor-foszfát gerince vastag csőnek, míg a nukleinsav bázisok lapocskáknak fognak látszani. A fehérjék béta-redős régióit lapos nyilakkal, az alfa-hélixeket "hajcsavarokkal", míg a többi fehérjeszakaszt vékony csővel jelölik a programok. A publikációkban is leggyakrabban ezzel a megjelenítési móddal találkozhatunk. Fontos megjegyezni, hogy az eddig említett modellek egyike sem veszi figyelembe az atomok valódi térkitöltését. De ennek ábrázolására is van mód: akár hálóval (mesh), akár teljes felszínnel (surface). Fehérjék és kisebb molekulák kölcsönhatása különösen látványossá tehető, ha a kis molekulát pálcikákkal, a fehérjét pedig a felszínt mutató módban ábrázoljuk. A felszín ábrázolásakor színezhetünk is: nem csak az egyes atomok típusai, hanem a felszín karaktere szerint is: például ábrázolhatjuk a hidrofobicitást vagy a töltéssűrűséget. Ha pedig két rokon molekulát szeretnénk összehasonlítani, arra is van mód: a legtöbb ilyen megjelenítő program tartalmaz "térbeli illesztést" lehetővé tevő algoritmusokat. A PyMol "align" és "super" parancsa az elsőként megadott molekulát addig tolja és forgatja a térben, amíg az a másiktól minimális távolságra és orientációba nem kerül (az atomi koordináták "euklideszi" különbségeit tekintve).

10.5.2. Homológia-modellezés és in silico dokkolás

A makromolekulák térbeli szerkezetének elemzése nem csak "kézzel" lehetséges. Az egyes atomi koordináták ismerete lehetőséget teremt arra, hogy különböző szerkezeteket automatizált módon összehasonlítsunk, sőt, akár ismeretlen szerkezeteket is előre jósoljunk, méghozzá a homológia-modellezés módszerével. Erre elsősorban akkor van mód, ha az általunk vizsgált fehérje domén szerkezete ugyan nem ismert, de egy vagy több közeli rokonáé igen. A homológia-modell felállítására jól használható például a SwissModel szerver: Bemeneti információnak egy minél pontosabb páronkénti illesztést kell megadnunk, és az ismert partner szerkezetét mutató fájlt (vagy pdb kódot). Az eljárás során a program nagyrészt változatlanul hagyja a fehérje fő láncának lefutását, de az oldalláncokat az új domén szekvenciája alapján fogja újjáépíteni. Természetesen kezelnie kell az inszerciók/deléciók esetét is, méghozzá a polipeptidlánc lefutásának ésszerű korrekciójával. De a szerkezetek ismerete nemcsak homológia-modellezésre használható, hanem ismeretlen partnerek kötődésének modellezésére is. Ennek mindenekelőtt a gyógyszermolekulák tervezésében van óriási jelentősége. A legtöbb, kis szerves molekula esetén a belső konformációs átmenetek szerepe elhanyagolható, így a kis molekula teljesen rigid darabként kezelhető. A módszer neve ezért "merev-test dokkolás" (Rigid body docking). A számítógép a gyógyszermolekulát a "végtelenből" közelítve a célzott felszínhez, megkeresi a lehetséges helyi energiaminimumokat, beillesztve a kis molekulát a fehérje megfelelő kötőzsebébe (AutoDock). Ilyen szimulációkat peptidek esetére is végezhetünk: itt azonban a lehetséges konformációk nagy száma nehezíteni fogja a számítást. Ha rendelkezünk egy megbízható (homológia-) modellel a várható végállapotról, a kötési energia akár a fő lánc konformációjának megváltoztatása nélkül is megbecsülhető: így működik a FoldX nevű szimulátor program. Ez főleg olyankor használható, ha egy szerkezetileg jól ismert fehérje-fehérje kölcsönhatásról van szó. Természetesen arra is van mód, hogy a peptidlánc konformációja véletlenszerűen változtatható legyen. Ilyet kínál fel a (Rosetta alapú) FlexPepDock szerver. Noha helyesebb modellnek tűnik, ezen megközelítésnek van egy komoly hátránya: a peptidlánc modellje hajlamos beragadni a lokális energia-minimumokba, így a módszer általában alábecsüli a valóságban mérhető kötési energiát.