3.2. A sugárzás spektruma és törvényszerűségei

Megfigyelhetjük, hogy a napra kitett tárgy felforrósodik. A napsugár a levegőn áthaladva eljut a tárgyig, s felmelegíti azt, úgy hogy közben a levegőre alig van hatással. A Napból a tárgyhoz eljutott energia az ún. sugárzási energia vagy sugárzás. Ez az energia elektromágneses hullám formájában terjed, s csak akkor alakul hőenergiává, amikor elnyeli egy tárgy. Mivel e hullámoknak egyaránt vannak elektromos és mágneses tulajdonságaik, ezért elektromágneses hullámoknak nevezzük őket. A 3.13. ábrán bemutatjuk néhány ismert elektromágneses sugárzás jellemző hullámhosszát (a hullámhossz definíció szerint két hullámhegy távolsága). Az ábráról leolvasható, hogy a hullámhosszak jelentős mértékben eltérnek egymástól, a legnagyobb és a legkisebb jellemző hullámhossz között 11 nagyságrend eltérés van. A sugárzási energia és a hullámhossz egymással fordítottan arányos, azaz minél kisebb a sugárzás hullámhossza, annál nagyobb az általa hordozott energia mennyisége. E hullámoknak nincs szükségük közegre tovaterjedésükhöz. Vákuumban (légüres térben) állandó (300 000 km/s) sebességgel haladnak, értelemszerűen ez a látható fény terjedési sebessége is.

 

Az elektromágneses sugárzás típusai, s azok jellemző hullámhosszai

3.13. ábra: Az elektromágneses sugárzás típusai, s azok jellemző hullámhosszai

 

 

A Napból jövő sugárzás részecskéinek ütközés révén történő energia leadása

3.14. ábra: A Napból jövő sugárzás részecskéinek ütközés révén történő energia leadása.

A Napból érkező sugárzást egymástól nagyon eltérő formákban érzékeljük: pl. látható fény, hősugárzás vagy rádióhullámok. Mégis a sugárzás hullámhosszától függetlenül a légkörben lezajló folyamatok lényege közös: a légköri atomok és molekulák részére a sugárzási energia elnyelése, illetve kisugárzása biztosítja az átmenetet egy-egy magasabb, illetve alacsonyabb energiaállapot között. Mikor egy-egy részecske sugárzás révén energiát nyel el (abszorbeál), vagy energiát ad le (emittál), akkor az elektronok egy magasabb, illetve alacsonyabb energiaszintre ugranak.

A 3.14. ábra a Napból érkező nagy erejű sugárzásnyaláb részecskéinek ütközés révén bekövetkező energia leadásának sematikus folyamatát mutatja.

Annak érdekében, hogy jobban megérthessük a Napból jövő sugárzás kölcsönhatását a légköri részecskékkel és a földfelszínnel, tekintsük át a sugárzás általános törvényszerűségeit, melyeket a fizikusok már az 1800-as évek végén, 1900-as évek elején felismertek.

A vizsgált tárgy lehet bármi, egy szék, egy könyv, egy virág, egy csillag vagy a Föld, amennyiben hőmérséklete az abszolút nulla fok (–273 °C) felett van, energiát sugároz ki. Ezt a nagyon fontos állítást akár a nulladik sugárzási törvénynek is nevezhetjük. Azon nem csodálkozunk, hogy egy forró radiátor vagy a Nap energiát sugároz, de a fenti törvény értelmében azt is el kell fogadnunk, hogy a relatíve hűvös Föld bolygó vagy a sarki jégsapkák dermesztően hideg jégmezői is hőenergiát sugároznak. A sugárzástanban leggyakrabban az ún. abszolút hőmérsékleti skálát használjuk, melynek mértékegysége a kelvin (0 K = –273 °C, továbbá 1 K hőmérsékletváltozás megfelel 1 °C hőmérsékletváltozásnak).

További négy fontos törvényszerűség szabályozza a vákuumban zajló sugárzási viszonyokat, melyek egyben jól közelítik a Nap-légkör-Föld rendszer folyamatait is.

I. Egy adott hőmérsékletű test által kisugárzott energia spektrumát (hullámhossz szerinti eloszlásfüggvényét) írja le a Planck törvény, azaz, hogy mely hullámhosszon mennyi energiát sugároz ki a test. Minden testre kiszámítható és megrajzolható egy ún. Planck függvény, ahogy azt a 3.15. ábrán is láthatjuk. Ha egy test T1 hőmérséklete nagyobb egy másik test T2 hőmérsékleténél, akkor a Planck függvények tulajdonságait az alábbiakban foglalhatjuk össze: (1) a teljes spektrumon (hullámhossz tartományon) kisugárzott energia mennyisége (melyet a 3.15. ábrán a görbe alatti terület reprezentál) annál nagyobb, minél nagyobb a sugárzó test hőmérséklete; (2) a maximális energia-kisugárzáshoz tartozó hullámhossz (λmax) annál nagyobb, minél kisebb a test hőmérséklete, azaz λmax fordítottan arányos a test hőmérsékletével.

II. A Kirchoff-törvény megállapítja, hogy a test által kibocsátott (emittált) és elnyelt (abszorbeált) energiák hányadosa nem függ az anyag minőségétől, viszont a jól elnyelő test egyben jó kisugárzó is, illetve a gyengén elnyelő test egyben gyengén kisugárzó.

III. Az egyik legnagyobb jelentőségű sugárzási összefüggés a Stefan-Boltzmann törvény, mely alapján a teljes spektrumon kisugárzott összes energia mennyisége (E) az alábbiak szerint írható fel:

E = σSB T4 [W/m2],

(3.1.)

ahol σSB a Stefan-Boltzmann állandó, melynek értéke σSB = 5,67·10–8 [W/m2K4] és T a sugárzó test hőmérséklete kelvin egységben. E törvény kimondja, hogy a test által kisugárzott teljes energia mennyisége csak a sugárzó test hőmérsékletétől függ, s annak negyedik (!) hatványával arányos.

 

 

Planck függvények tulajdonságai

3.15. ábra: Planck függvények tulajdonságai

IV. Az utolsó a sugárzási összefüggések sorában a Wien-féle eltolódási törvény, mely szerint

λmax = 2884/T [μm].

(3.2.)

Ezen állítás azt jelenti, hogy a sugárzó test azon hullámhossza, melyen maximális energiával sugároz nagyon egyszerűen számítható, s e hullámhossz fordítottan arányos a test abszolút hőmérsékletével. A továbbiakban bemutatjuk, hogy az ismertetett általános törvényszerűségek hogyan jelentkeznek a meteorológiai folyamatok szempontjából, s miként alakítják a földi légkör sugárzási egyenlegét.