3.4. A napsugárzás elnyelődése a légkörben, az óceánokban és a talajban

A napsugárzás földrajzi szélességek szerinti bevételei és veszteségei láthatók a 3.18. ábrán.

3.18. ábra: A Napból érkező sugárzási energia éves átlagainak földrajzi szélesség szerinti eloszlása (W/m2) 1.: Napsugárzás a légkör külső határán, 2.: A felszín által elnyelt sugárzás, 3.: Visszaverődés a felhőkről, 4.: Légköri elnyelés, 5.: Légköri visszaverődés, 6.: Elnyelés a felhőkön, 7.: Felszíni visszaverődés (Forrás: Sellers, 1965)

Jól látható egyrészt, hogy a légkör felső határára érkező napsugárzásnak csak közel fele érkezik le a földfelszínre, másrészt, hogy a legnagyobb zonális különbségeket a légkör külső határára érkező napsugárzás, illetve a szárazföldek és vízfelszínek által elnyelt sugárzás mutatja. Kicsit kisebb mértékű a felhőkről való visszaverődés és a légköri elnyelés földrajzi szélességek szerinti változása, míg a felhőkön való elnyelődés és a légköri szóródás miatti visszaverődés nem mutat zonális eltéréseket. A felszínről való visszaverődés a sarkvidékek körzetében a legnagyobb, hiszen itt a felszín hó- és jégborítottsága miatt kimagasló albedó értékek jelentkeznek.

 

A felhőrétegen visszaverődött, elnyelt és áteresztett (transzmittált) napsugárzás százalékos arányai a felhővastagság függvényében

3.19. ábra: A felhőrétegen visszaverődött, elnyelt és áteresztett (transzmittált) napsugárzás százalékos arányai a felhővastagság függvényében (%)

A légkör felső határára érkező napsugárzás mintegy 30%-a azonnal visszaverődik a világűr felé, s a légköri áthaladás során is sok veszteség éri. A felhőtakarón történő visszaverődés (reflexió), elnyelés (emisszió) és transzmisszió (áteresztés) százalékos aránya nagyon jelentősen függ a felhőréteg vastagságától (3.19. ábra). Az elnyelési arány akár több kilométeres vastagságnál sem éri el a 10%-ot. A visszaverődési és áteresztési képesség százalékos aránya egymással ellentétesen változik, a felhőkről való visszaverés 35%-ról akár 90–95%-ra is megnőhet a felhővastagsággal, míg az áteresztőképesség 65%-ról akár 0%-ra is lecsökkenhet.

A napsugárzás légköri veszteségeit sokszorosan meghaladja az óceánok vizébe és a talajba lejutó sugárzás vesztesége. Átlagosan azt mondhatjuk, hogy a talajban nem haladja meg a 8-10 méteres mélységet az éves hőmérsékleti ciklus érzékelési szintje, míg a tengerekben, óceánokban ez a mélység egy nagyságrenddel nagyobb, eléri a 80–100 métert. A 3.20. ábra példaként bemutatja egy Északi-tenger körzetében végzett méréssorozat eredményeit, a felső 100 méteres vízréteg éves hőmérsékleti profiljait. Míg a felszíni vizek februári és augusztusi hőmérséklete között közel 10 fok az eltérés, addig ugyanezen mennyiség már 1 fok alatti 100 m-es mélységben. Ugyanakkor megfigyelhető a felső 40 m-es réteg intenzív nyári felmelegedése.

Az óceánok hőháztartásában jelentős szerep jut a Napból érkező sugárzási energiának. A mélyebb óceáni rétegek felé az energiát az óceáni áramlások, s a turbulens átkeveredés közvetíti. A 3.21. ábra a tengerfelszínre, illetve néhány felszínközeli rétegig lejutó sugárzás spektrális eloszlását mutatja be. Az ábra által pontosabb képet kaphatunk arról, hogy mely hullámhossz tartományok nyelődnek el a vízben a leghamarább, illetve a leglassabban. Talán meglepő lehet az olvasók számára, hogy csak a látható fény tartományú sugárzás képes 1 m-nél nagyobb mélységekbe lejutni, s 100 m alá csupán a teljes sugárzási energia 3%-a jut le.

 

Az Északi-tenger felső 100 méteres rétegének közepes hőmérséklete február, május, augusztus és november hónapokban

3.20. ábra: Az Északi-tenger felső 100 méteres rétegének közepes hőmérséklete február, május, augusztus és november hónapokban

 

Az óceán felszínére, illetve a 0,1 m, 1 m, 10 m és 100 m-es mélységekbe lejutó napsugárzás spektrális eloszlása

3.21. ábra: Az óceán felszínére, illetve a 0,1 m, 1 m, 10 m és 100 m-es mélységekbe lejutó napsugárzás spektrális eloszlása (Sverdrup, 1945 nyomán)

A talajban még az óceánok vizénél is sokkal rosszabbak a feltételek a sugárzási energia terjedéséhez. Mint tudjuk a talajban szinte csak és kizárólag kondukciós folyamatok révén terjed az energia. E folyamat hatékonysága jelentős mértékben függ a talaj porozitásától és a nedvességtartalomtól. A 3.22. ábra az éves hőmérsékleti ciklust mutatja a talaj 3cm, 31cm,63 cm, 125 cm, 251 cm, 502 cm és 753 cm-es rétegeiben, Königsberg (Kalinyingrád) körzetében végzett mérések alapján. Levonhatjuk a következtetést: 10 m mélységben lényegében már nem érzékelhető a Napból érkező sugárzás szezonális változása.

 

Különböző mélységű talajrétegek éves átlagos hőmérsékleti menete

3.22. ábra: Különböző mélységű talajrétegek éves átlagos hőmérsékleti menete. A méréseket a talaj felszínén, illetve 3 cm, 31 cm, 63 cm, 125 cm, 251 cm, 502 cm és 753 cm-es talajrétegekben végezték, Königsberg (Kalinyingrád) körzetében (Geiger, 1965 nyomán).