4. fejezet - Hőforgalom a légkörben

Tartalom

4.1. A termodinamika alapfogalmai
4.1.1. A hőmérséklet
4.1.2. A nyomás
4.2. A termodinamika fontosabb összefüggései
4.3. Adiabatikus folyamatok

Ebben a fejezetben bemutatjuk a legfontosabb termodinamikai állapothatározókat, majd összefoglaljuk a termodinamika legjelentősebb törvényeit, melyek a földi légkörben (különösen annak felszín közeli rétegeiben) alapvető szerepet játszanak. Végül ismertetjük a légkörben lezajló adiabatikus folyamatok alapjait.

4.1. A termodinamika alapfogalmai

A különböző fizikai mennyiségeket extenzív vagy intenzív termodinamikai állapotjelzőknek tekinthetjük. Az előbbiek közé tartoznak azok a fizikai változók, melyek két test vagy rendszer kölcsönhatásakor összeadódnak (additívak). Ilyenek például a tömeg (m), a térfogat (V), az anyagmennyiség (n) stb. Az intenzív állapotjelzőkre viszont az jellemző, hogy a kölcsönhatások során kiegyenlítődésre törekednek. Ilyen típusú fizikai mennyiség például a nyomás (p) és a hőmérséklet (T) is. Az intenzív mennyiségeket általában sokkal egyszerűbb mérni, mint az extenzíveket, s ezért a meteorológiában olyan összefüggésekre igyekszünk jutni, amelyekben többnyire intenzív fizikai változók szerepelnek. Ebben az alfejezetben a légkör két legfontosabb intenzív termodinamikai állapothatározójáról – a hőmérsékletről és a nyomásról – lesz szó.

4.1.1. A hőmérséklet

A hőmérséklet tulajdonképpen az energiával ekvivalens fogalom, ám ez csupán a statisztikus fizika fejlődése során vált nyilvánvalóvá. A gázok hőmérsékletét az adott gáz alkotórészecskéinek mozgása határozza meg a részecskék kinetikus energiája révén. A szobahőmérsékletű (20 °C-os) levegő molekulái például 450 m/s (azaz 1620 km/h) átlagsebességgel mozognak. A levegő különböző gázok keveréke (lásd 2. fejezet), s benne a nehezebb molekulák valamivel lassabb, a könnyebbek viszont gyorsabb mozgást végeznek. A szobában lévő levegő melegedésével a részecskék átlagsebessége növekszik. Ha viszont a szoba levegője hidegebbé válik, akkor a molekulák egyre lassabban fognak mozogni. Definíció szerint a részecskék teljes mozdulatlanságakor fellépő elméleti hőmérséklet jelöli ki az abszolút nulla fokot, mely az ún. Kelvin-skála nullpontját adja meg.

Ezt az abszolút skálát használjuk a hőmérséklet SI-mértékegységeként, s a termodinamikai számítások során is kelvinben számolunk. A hétköznapi életben azonban Celsius-fokban mérjük a hőmérsékletet. A Celsius-skálát Anders Celsius (1701–1744) svéd csillagász definiálta 1742-ben. A skála két alappontja az olvadó jég (0 °C), illetve a forrásban lévő víz (100 °C) hőmérséklete normál légköri állapot esetén. Az abszolút hőmérsékleti skálát alkalmazva 0 °C = 273,16 K, 100 °C = 373,16 K. A Celsius- és a Kelvin-skála között – általánosan alkalmazott kerekítés után – tehát csupán egy 273°-os eltolás van:

°C = K – 273, és K = °C + 273.

Vannak olyan országok is, ahol a hétköznapi életben egy ettől eltérő, harmadik típusú hőmérsékleti skálát alkalmaznak (elsősorban az USA-ban). Ez a Fahrenheit-skála, melyet szintén a megalkotójáról, Daniel Gabriel Fahrenheit (1686–1736) német fizikusról neveztek el. Fahrenheit már Celsius előtt, 1714-ben megalkotta hőmérőjét, melynek két alappontja a víz fagyáspontja (32 °F) és az emberi test feltételezett hőmérséklete (96 °F). Megjegyezzük, hogy az ember testhőmérsékletét Fahrenheit a lovak vérének hőmérsékletével közelítette. Ma már tudjuk, hogy az emberi test hőmérséklete helyesen 98,6 °F (azaz 37 °C). A víz forráspontjának 212 °F adódik ezen a skálán (4.1. ábra). A Celsius- és a Fahrenheit-skála közötti átszámítást az alábbi képletekkel végezhetjük el:

és

 

A hőmérsékleti skálák összehasonlítása

4.1. ábra: A hőmérsékleti skálák (abszolút hőmérsékleti skála, Celsius- és Fahrenheit-skála) összehasonlítása

4.1.2. A nyomás

Minden abszolút nulla foknál nagyobb hőmérsékletű gáz részecskéi állandó mozgásban vannak. A gázmolekulák folyamatosan ütköznek egymással, s minden más útjukba kerülő felülettel. A levegő egy molekulája például átlagosan másodpercenként mintegy tízmilliárdszor ütközik más levegőrészecskékkel. Egy felületre (A) a sok-sok ütközés során kifejtett erők eredője (F) határozza meg a gáz p nyomását:

(4.1)

A nyomás SI-mértékegysége a pascal (Pa). A fenti képlet alapján egy adott gáz nyomása 1 Pa akkor, ha egy 1 m2-es felületre 1 N (Newton) nagyságú erőt fejt ki.

A légkör molekuláit a gravitációs erő tartja a Föld vonzáskörzetében. A levegő részecskéi ennek megfelelő erőt fejtenek ki a felszínre. Így a földfelszíni légköri nyomás (vagyis a tengerszinti légnyomás) a felszín fölötti légoszlop súlyával adható meg. Az átlagos tengerszinti légnyomás értéke az ICAO (Nemzetközi Polgári Repülésügyi Szervezet) standard szerint 1013,25 hPa (15 °C-on, 40° északi szélességen). A földfelszíntől távolodva egyre kisebb az egységnyi terület fölötti légoszlop súlya, s ezzel együtt a légnyomás is exponenciálisan csökken (lásd 2. fejezet). A meteorológiában régebben használták a millibart is a légnyomás jellemzésére, mely a bar nyomásegység ezredrésze, továbbá: 1 mbar = 1 hPa = 100 Pa.