4.3. Adiabatikus folyamatok

Az eddig tárgyalt nevezetes termodinamikai állapotváltozásokon kívül még az adiabatikus folyamatokról kell szólnunk, melyek során ugyan az alapvető fizikai mennyiségek egyike sem állandó, de a komplex légköri folyamatokban játszott kiemelkedő szerepük miatt lényegesek. Az adiabatikus termodinamikai állapotváltozásokban nincs hőátadás. Ennek lehet az az oka, hogy a rendszer és a környezete között tökéletes a hőszigetelés, illetve adódhat abból is, ha nagyon gyorsan zajlik le a folyamat. Földünkön a troposzférában ez utóbbi feltétel teljesül – a levegőrészecskék, légtömegek függőleges irányú mozgása olyan gyorsan következik be, hogy nincs idő a hőátadásra. Azokat az adiabatikus folyamatokat, amikor a levegő még nem telített, száraz adiabatikus, a telítettség elérése után pedig nedves adiabatikus folyamatoknak nevezzük.

A termodinamika II. főtételének egyik fontos következménye, hogy a végzett munkát mindig lehetséges teljesen hővé alakítani, viszont fordítva, a hő munkává alakítása tökéletesen sohasem lehetséges. A hőmennyiséget hasznos munkává alakítani termodinamikai úton a legnagyobb hatásfokkal az ún. Carnot-féle körfolyamattal tudjuk, amely két izoterm (A-B, C-D) és két adiabatikus (B-C, D-A) állapotváltozásból tevődik össze, ahogy az a 4.4. ábrán látható.

 

A Carnot-féle körfolyamat a p-V állapotsíkon

4.4. ábra: A Carnot-féle körfolyamat a p-V állapotsíkon

A körfolyamatok esetén az összes belső energiaváltozás zérus, viszont a hőmennyiség és a végzett munka nem nulla. Az elérhető maximális μ hatásfokot a francia Nicolas Leonard Sadi Carnot (1797–1832) határozta meg:

. (4.13)

Tehát kizárólag a két izoterm folyamat hőmérséklete (T1, T2) befolyásolja ezt a legkedvezőbb hatásfokot. Minél nagyobb a különbség T1 és T2 között, a hatásfok annál jobban megközelíti a 100%-ot.

Amint említettük, adiabatikus állapotváltozások során a szokásos állapotjelzők (p, V, T) egyike sem állandó, viszont van olyan származtatott fizikai mennyiség, ami nem változik. Ez az ún. potenciális hőmérséklet. Helmuth von Bezold, német kutató definiálta elsőként a XIX. század vége felé az alábbiak szerint:

. (4.14)

A (4.14) egyenletből kitűnik, hogy a potenciális hőmérséklet (Θ) tulajdonképpen az a hőmérséklet, amit a T hőmérsékletű és p nyomású levegő az 1000 hPa légnyomású (p1000) szinten felvenne. A potenciális hőmérséklet definíciója a száraz levegő 4.5. ábrán látható adiabatikus emelkedéséből kiindulva az ún. Poisson-egyenletből vezethető le.

 

A száraz levegő adiabatikus felemelkedése

4.5. ábra: A száraz levegő adiabatikus felemelkedése