5.2. Egyensúlyi áramlások a légkörben

Ebben a részben a földfelszínnel párhuzamosan kialakuló egyensúlyi áramlásokat fogjuk ismertetni. Az egyensúlyi áramlás kifejezést az alábbiakban egy kicsit általánosabb értelemben használjuk, mint azt például a fizikában vagy a mindennapi szóhasználatban szokás. Mint azt látni fogjuk, az egyensúlyi áramláson azt értjük, hogy az áramlás sebességének nagysága állandó, de nem követeljük meg a sebesség irányának állandóságát.

5.2.1. Geosztrófikus szél

A földi légtömegek mozgását kiváltó legfontosabb erőhatást a különböző területek légnyomása közötti eltérések váltják ki. Az emiatt fellépő nyomási gradiens erő az eltérő nyomásviszonyok kiegyenlítődését segíti. A felszíntől távolabb, a magasabb légköri rétegekben a súrlódás nem játszik jelentős szerepet, s így az ún. szabad légkörben (a földfelszíntől számítva mintegy 500–1000 m-es magasság fölötti légrétegekben) a nyomási gradiens erő és a Coriolis-erő egyensúlyának hatására alakul ki a geosztrófikus szél (5.11. ábra).

Az előbbi erőhatás a magasabb nyomású területek felől az alacsonyabb nyomású területek felé irányul, a Coriolis-erő pedig mindig a pillanatnyi mozgás irányára merőlegesen hat. A két erőhatás eredőjeként a geosztrófikus szél az izobárokkal párhuzamosan fúj, mégpedig oly módon, hogy szélirányba fordulva az északi féltekén az alacsonyabb légnyomású terület esik a bal kezünk felé (a déli féltekén viszont a jobb oldalon található). Ez a Buys Ballot-féle széltörvény, melyet az előző alfejezetben már megismerhettünk. Ott kiegészítésképpen a geosztrófikus áramlás kialakulásának folyamatát is bemutattuk (lásd 5.7. ábra). Minél közelebb esnek egymáshoz az izobárok, annál nagyobb sebességgel áramlik a levegő – hasonlóan ahhoz, mint mikor a vízfolyások összeszűkülésekor gyorsabbá válik a vízáramlás is, majd a meder kiszélesedésekor ismét lelassul.

 

A geosztrófikus szél az északi és a déli félgömbön

5.11. ábra: A geosztrófikus szél az északi és a déli félgömbön

Az alábbi egyenletek adják meg a ρ sűrűségű légkörben a geosztrófikus szél két horizontális komponensének (u, illetve v) nagyságát:

, , (5.18)

ahol f = 2Ω sinφ az ún. Coriolis-paraméter, Ω a Föld forgási szögsebessége, φ pedig a földrajzi szélesség.

5.2.2. Gradiens szél

A valóságban a földi légkörre ritkán jellemzőek az egyenes izobárvonalak, sokkal gyakoribb, hogy az izobárok görbültek. A görbült pályán kialakuló egyensúlyi áramlás az ún. gradiens szél (5.12. ábra).

Ciklonális esetben, vagyis amikor a görbült izobárok központjában alacsony légnyomás uralkodik, az eredő centripetális erő iránya a nyomási gradiens erő irányával megegyezően befelé mutat, s az északi félgömbön az óramutató járásával ellentétes irányú légkörzés alakul ki. A magas központi légnyomással jellemezhető anticiklonális esetben viszont a Coriolis-erő és a nyomási gradiens erő különbségeként előálló centripetális erő a Coriolis-erő irányába mutat, s így az északi félgömbön az óramutató járásával megegyező irányban fog a levegő is áramlani. A levegő áramlása a déli félgömbön az északival ellentétesen alakul, tehát a ciklonális esetre az óramutató járásával megegyező, az anticiklonális esetre pedig azzal ellentétes irány érvényes.

Minthogy a Coriolis-erő nagysága a szélsebesség függvényében változik (5.13. ábra), így azonos nyomási gradiens esetében az anticiklonokban nagyobb szélsebességek lennének jellemzőek, mint a ciklonokban. A valóságban azonban éppen az alacsony nyomású légköri ciklonokban tapasztalunk erősebb szeleket. Ennek az a magyarázata, hogy a ciklonokban az izobárok egymáshoz jóval közelebb helyezkednek el, s így a nyomási gradiens erő is nagyobb, mint a magas légnyomású anticiklonális területeken.

 

A gradiens szél kialakulása

5.12. ábra: A gradiens szél kialakulása az északi féltekén alacsonynyomású ciklonális esetben (bal oldalon) illetve magasnyomású anticiklonális esetben (jobb oldali ábra)

Az Egyenlítő környékéhez közeledve a Coriolis-erő nagysága gyorsan csökken, s ezért a trópusi ciklonokban a mérsékelt övi ciklonhoz viszonyítva sokkal nagyobb légáramlási sebességek alakulnak ki.

 

A Coriolis-erő nagyságának változása a földrajzi szélesség függvényében

5.13. ábra: A Coriolis-erő nagyságának változása a földrajzi szélesség függvényében különböző szélsebességek esetén

Kisebb térskálájú képződményekben előfordulhat, hogy csupán a nyomási gradiens erő hatására alakul ki erős szél, melynek nagysága is csak a nyomási gradiens erő függvénye – ezt az áramlást ciklosztrófikus áramlásnak nevezzük (5.14. ábra). Ilyen ciklosztrófikus légköri képződmények például a mérsékelt övi tornádók vagy a portölcsérek, melyek karakterisztikus mérete, illetve rövid élettartama miatt a Coriolis-erőnél lényegesen erőteljesebb hatása van a nyomási gradiens erőnek. Ebből következik az is, hogy az említett légköri jelenségek alacsony nyomású középponttal rendelkeznek, s itt nincs különbség a két félgömb között. A tornádókban a levegő többnyire ciklonálisan áramlik, a portölcsérek esetében viszont50–50% a ciklonális és az anticiklonális irányú örvénylés aránya.

 

A ciklosztrófikus szél kialakulása

5.14. ábra: A ciklosztrófikus szél kialakulása

5.2.3. A súrlódás szerepe

Az eddigiekben a magasabb légrétegek áramlási viszonyainak jellemzőit tekintettük át. A földfelszín közelében a felszíni egyenetlenségek miatt fellépő súrlódás lényegesen befolyásolja a levegő mozgását. A tapasztalatok azt mutatják, hogy a felszínhez közelebbi alsó légrétegekben a szél iránya nem párhuzamos az izobárokkal, illetve nem érintőleges az izobárok görbéire. A nyomási gradiens erő, a Coriolis-erő, s a súrlódás hatására keletkező felszíni áramlásokat mutatja az 5.15. ábra ciklonális és anticiklonális esetben.

Az északi félgömbön az alacsony nyomásközponttal jellemezhető ciklonokban az óramutató járásával ellentétes irányba a központ felé fúj a szél, míg az anticiklonoknál a magasnyomású központtól kifelé, az óramutató járásával megegyező irányú az áramlás. Az izobárok és a szélvektor által bezárt szög nagysága átlagosan 30º, s annál nagyobb, minél érdesebb a felszín. Így a viszonylag sima víztükör felett csupán 10–15º, míg dombvidék esetén ez a szög elérheti a 35–40º-ot is. A felszín érdességén kívül a szélsebesség és a földfelszíntől mért távolság határozza meg az izobárok és a légáramlás iránya által bezárt szöget. Erős szél esetén ez a szög kisebb, s ugyancsak csökken a nagysága a földfelszíntől felfelé távolodva.

 

A súrlódás szerepe a felszínközeli áramlásokban az északi félgömbön

5.15. ábra: A súrlódás szerepe a felszínközeli áramlásokban az északi félgömbön