13. fejezet - Az időjárás előrejelzése

Tartalom

13.1. Az előrejelzések célja
13.2. Az időjárás számszerű előrejelzése
13.3. A kiindulási adatok
13.4. A numerikus előrejelzés alapja – a légkör kormányzó egyenletei
13.5. Az előrejelzések készítése
13.6. Az előrejelzések megbízhatósága
13.7. Hosszú távú időjárás-előrejelzés
13.8. Az időjárás előrejelzése Magyarországon

13.1. Az előrejelzések célja

A gazdaság, a közlekedés vagy akár a mindennapi élet számára gyakran rendkívül fontos a várható időjárás ismerete. Az időjárás-előrejelzések különböző időszakokra és különböző térségekre nyújtanak információt a légkör feltételezett jövőbeli állapotáról, vagyis az egyes meteorológiai elemek (hőmérséklet, csapadék, szél stb.) várható értékeiről.

Az előrejelzések készítésének alapja a légkör pillanatnyi állapotának ismerete. Ezt az igényt a Globális Megfigyelő Rendszer (lásd 12. fejezet) elégíti ki. A mért és megfigyelt értékeket felhasználva matematikai modellek szimulálják a légköri állapothatározók térbeli és időbeli változásait. A modelleredmények adott sűrűségű rácspontokra szolgáltatnak becsléseket. Ebből a nyersanyagból kell azután a meteorológusnak előrejelzést készítenie a rácspontok közötti térre, figyelembe véve a helyi viszonyok hatásait, valamint a számítások közben eltelt idő alatt a valós állapotváltozásokat.

Az első, sikeresnek mondható numerikus (számszerű) előrejelzés végrehajtására az 1940-es években teremtődtek meg a technikai feltételek. A számítások Neumann János kezdeményezésére 1946-ban az ENIAC (Electronic Numerical Integrator and Computer) nevű számítógépen kezdődtek (13.1 ábra).

 

Az ENIAC számítógép

13.1. ábra: Az ENIAC (Electronic Numerical Integrator and Computer) számítógépen futtatták le az első numerikus előrejelzési modellt 1946-ban

1950-re Neumann Jule Charney, Carl-Gustaf Rossby és Arnt Eliassen meteorológusok segítségével megalkotta az első számítógépes időjárás-előrejelzést. A légkört rácspontokra osztották, és ezekre a pontokra határozták meg a meteorológiai állapothatározók változásait. Az előrejelzés 270 rácspontra, háromórás időlépcsővel készült. Az eredmény nem volt túl jó, mindenesetre irányt szabott a jövőbeni munkáknak. Nem sokkal később, 1954-ben, Svédországban, Rossby vezetésével megkezdődött az első rutinszerű számítógépes időjárás előrejelzés. Ez azt jelentette, hogy hetente háromszor végeztek számításokat az észak-atlanti térségre. Joseph Smagorinsky kezdeményezésére egy évvel később, 1955-ben megszületett az első általános cirkulációs modell (GCM – General Circulation Model). Normann Phillips hemiszférikus, kétszintes numerikus modellje volt az első, amely már nem csak egy kisebb térségre, hanem az egész északi félgömbre készített előrejelzést. A GCM-ek használata elterjedt az 1950-es években. Ezt az is magyarázza, hogy ezek az egész légkör (de legalább az északi vagy a déli félgömb) cirkulációját szimuláló modellek nem csak az időjárás előrejelzésére használhatók, hanem más kutatási célra is, például az üvegházhatás vagy a légkör vertikális szerkezetének vizsgálatára. A következő évtizedekben a modelleket tovább pontosították az óceán és a légkör egyidejű szimulálásával. A kapcsolt óceán-légkör modellek már hosszabb, éghajlati időskálára is képesek projekciókat készíteni (ezekkel a modellekkel határozzák meg többek között azt is, hogy a légkör összetételének módosulása milyen módon hat a Föld éghajlatára).

A napjainkban használatos számítógépes modellek is a Wilhelm Bjerknes és a Lewis F. Richardson által kidolgozott elméleti alapokon nyugszanak, s a számítástechnika adta lehetőségeket kihasználva, egyre pontosabban szimulálják a légkör jelenlegi és jövőbeli állapotát.

Az első időjárási térkép készítésétől eltelt mintegy másfél évszázad alatt rendkívüli mértékben fejlődött a légkör állapotának előrejelzése. A kutatási eredmények, az előrejelzési tapasztalat, a nagy teljesítményű és gyors szuperszámítógépek által megteremtett háttér segítségével egyre pontosabb időjárás-előrejelzések készíthetők. Minél hosszabb időszakra készül egy előrejelzés, annál nagyobb lesz a bizonytalansága, elsősorban a légköri folyamatok rendkívüli bonyolultsága és kaotikus jellege miatt. Ez azt jelenti, hogy az előrejelzés pontosságának mindig is lesznek elvi és gyakorlati korlátai, s e korlátok annál nagyobbak, minél hosszabb távra szól az előrejelzés. Jelenleg 10–20 nap az az időtartam, amelyre még elfogadható pontossággal kiszámítható az egyes meteorológiai állapothatározó mezők jövőbeli alakulása, 4–5 napra pedig már gyakorlati célokra is jól alkalmazható előrejelzések készíthetők. Természetesen készülnek hosszabb távú, évszakos előrejelzések is, de ezek konkrét értékek helyett egy-egy időszak átlagos időjárási értékektől való eltérésének valószínűségét adják meg. Nem tudjuk például előrejelezni, hogy egy hónap múlva egy adott helyen hullik-e majd csapadék, és ha igen, akkor mennyi, csak azt, hogy az átlagosnál szárazabb vagy csapadékosabb időjárásra számíthatunk-e. Az időjárás prognózisa – vonatkozzon az akár néhány órára, akár néhány hétre – az élet számos területén nyújt olyan információt, ami gazdaságosabbá, kényelmesebbé, vagy épp biztonságosabbá teszi mindennapjainkat. A jó előrejelzések „haszna” általában nem kézzel fogható, viszont egy hibás prognózis okozta „veszteség” nagy feltűnést kelt. Objektíven tekintve azonban úgy tűnik, hogy a mai időjárás-előrejelzések egyre nagyobb hasznot hoznak, s csak ritkán jelentenek veszteséget akár egy magánszemélynek, akár egy felhasználó cégnek, akár a jó előrejelzést készítő és ezzel presztízsét növelő meteorológusnak.