4.2 A Mologyenszkij-féle áthidaló dátumparaméterezés

Két geodéziai dátum közötti kapcsolat megadásának legegyszerűbb módja az, hogy csak a két ellipszoid középpontját összekötő vektort adjuk meg (17. ábra). A vektort a 2. fejezetben ismertetett, geocentrikus derékszögű koordinátarendszerben értelmezett komponenseivel, méterben kell megadni. Nyilvánvaló, hogy amennyiben a két dátum középpontja azonos (például mindkettő tümegközépponti elhelyezésű), akkor a kapcsolatot a nullvektor írja le, amelynek komponensei: (0,0,0). Meg kell jegyeznünk, hogy a nemzetközi, és ennek nyomán a hazai szakirodalom egy része is a Mologyenszkij, illetve Mologyenszkij-Badekas-féle paraméterezés néven említi ezt az igen egyszerű leírási formát, annak ellenére, hogy a Mihail Szergejevics Mologyenszkij által leírt eredeti dátumtranszformációs formulák ennél bonyolultabbak. A továbbiakban „áthidaló Mologyenszkij”-formulákként, vagy ÁM-rövidítéssel hivatkozunk ezekre.

Az áthidaló Mologyenszkij-féle dátumtranszformáció

17. ábra. Az áthidaló Mologyenszkij-transzformáció egy egyszerű eltolás a két dátum-ellipszoid között, amelyet az eltolási vektor három komponense jellemez.

Az áthidaló Mologyenszkij-féle leírás három paramétere: dX, dY és dZ, méterben adott távolságok írják le a vizsgált dátumellipszoidok geometriai középpontjainak egymáshoz képest értelmezett helyzetét. Ha a céldátum a WGS84 földi alapfelület, úgy a kiinduló dátum dX, dY és dZ paraméterei az ellipszoidnak a földi tömegközépponthoz viszonyított helyzetét adják meg. Amennyiben egy alappont derékszögű koordinátáit ismerjük az egyik (1.) dátumon, a paraméterek segítségével a második (2.), ún. céldátumon értelmezett geocentrikus koordináták a következő egyszerű összefüggéssel megkaphatók:

(4.2.1)

A kiinduló és a céldátumon értelmezett ellipszoidi koordináták közötti szögkülönbség a geocentrikus koordinátákra történő átszámítás és azokról való visszaszámítás nélkül is elvégezhető az áthidaló Mologyenszkij-formulák segítségével:

(4.2.2)

(4.2.3)

(4.2.4)

ahol a meridiángörbületi sugár; a harántgörbületi sugár; Δφ” és Δλ” a kiinduló és a céldátumon értelmezett szélesség- és hosszúságkülönbség szögmásodpercben; Δh az ellipszoid feletti magasságok különbsége; a és f a kiinduló dátumellipszoid fél-nagytengelye és lapultsága; da és df pedig ezek különbsége a kiinduló- és a céldátum között. Ha az ellipszoidi magasságok nem adottak, megbecsülhetjük őket helyi vagy globális geoidmodellek felhasználásával, vagy a (4.2.4) egyenletet el is hagyhatjuk a számításnál.

Mint korábban láthattuk, a térinformatikai programok az egyes dátumokat általában egy közös vonatkoztatási rendszerhez, a WGS84 dátumhoz képest definiálják, így hidalják át azt a problémát, hogy az egyes dátumok egyszerűen leírható eszközökkel önmagukban nem, csak más dátumokhoz képest definiálhatók. Amennyiben két független dátum és a WGS84 közötti paraméterek adottak, a két dátum közötti közvetlen AM-transzformáció paraméterei a linearitás következtében egyszerűen megadhatók. Legyen az A transzformáció az 1. dátum és a WGS84 közötti, a B pedig a 2. dátum és a WGS84 közötti. C-vel jelöljük az 1. és 2. dátum közötti közvetlen transzformációt. Ennek paraméterei:

(4.2.5)

függetlenül attól, hogy az 1. és 2. dátum mely ellipszoid egy-egy realizációja.

A szakirodalomban több esetben igencsak eltérő számhármasokat találunk egy-egy alapfelület és a WGS84 dátum közötti AM-transzformáció paramétereiként. Bár ez a térbeli elhelyezés pontos leírása szempontjából nyilvánvaló hibára utal, vízszintes értelemben az eltérés nem feltétlenül nagy ezek között. Két, különböző számhármassal, (mint AM-paraméterekkel) jellemzett dátum esetében, ahogyan azt mindjárt látni fogjuk, mindig van olyan ellipszoidi pont, amelyre nézve a két transzformáció azonos vízszintes eltolást jelent. A kérdés az, hogy ez a pont az adott dátum érvényességi területére (és lehetőleg annak közepére) esik-e? Amennyiben igen, akkor mindkét paramétersor használható, és az is eldönthető, hogy ebben a pontban függőleges értelemben mennyi az eltérés. A különbség általában a geoid-unduláció figyelmen kívül hagyásából származik.

Jelölje r1 a WGS84 ellipszoid geometriai középpontjától az 1. dátum középpontjába húzott helyvektort, r2-vel pedig a jelöljük a WGS84 középpontjától a 2. dátum középpontjába húzott helyvektort. Képezzük a két helyvektor háromdimenziós különbségét:

rdiff = r1-r2

(4.2.6)

Lássuk, hogy ez a helyvektor a középpontból az alapfelület milyen szélességgel és hosszúsággal megadott pontjára mutat:

(4.2.7)

(4.2.8)

míg a különbségvektor hossza (a háromdimenziós eltérés, méterben):

(4.2.9)

Amennyiben a (φrr) pont a dátum érvényességi területén van, úgy mindkét paramétersor alkalmazható. Ebben az esetben a különbségvektor hossza általában az ezen a ponton érvényes, a WGS84 ellipszoidhoz képest értelmezett geoidunduláció-érték körül adódik (lásd 4.6. pont), vagyis az egyik paraméter-hármas nem veszi figyelembe a dátumellipszoid térbeli helyzetét. Ha a (φrr) pont a Föld felszínén másutt helyezkedik el, akkor valamelyik paramétersor hibás.